scholarly journals Comparative Study of Ni-W /CeO2, Ni-W /y-Al2O3 and Ni-W /HT Catalysts for H2 Production by Steam Reforming of Bioethanol

Quimica Hoy ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 3
Author(s):  
Paz Hernández ◽  
Arturo Fernández ◽  
Sarah Messina

Ni-W catalysts supported on CeO2,Al2O3 and hydrotalcite (HT) were studied in the steam reforming of ethanol at 500-650ºC. The CeO2 and HT were synthesized by impregnation and direct coprecipitation methods, respectively. Commercial Al2O3 was used. Nickel content was varied from 10, 15 and 30% with 1% W. The catalyst that presented the highest catalytic activity and selectivity to hydrogen was 10% Ni-W/HT. Conversion to ethanol was 100% and selectivities to H2, CH4, CO2 and CO were 75, 5.78, 0.37 and 18.85%, respectively, at a temperature of 500 ºC. Moreover, these catalysts showed good stability with respect to carbon deposition and low selectivity towards C2H4 production. These are desirable features for catalysts to be used in hydrogen production for fuel cell applications.

2018 ◽  
Vol 43 (36) ◽  
pp. 17216-17229 ◽  
Author(s):  
Bernay Cifuentes ◽  
Felipe Bustamante ◽  
Juan A. Conesa ◽  
Luis F. Córdoba ◽  
Martha Cobo

2013 ◽  
Vol 38 (20) ◽  
pp. 8285-8292 ◽  
Author(s):  
Seung Ju Han ◽  
Yongju Bang ◽  
Jaekyeong Yoo ◽  
Jeong Gil Seo ◽  
In Kyu Song

2004 ◽  
Vol 5 (10) ◽  
pp. 611-615 ◽  
Author(s):  
F. Frusteri ◽  
S. Freni ◽  
L. Spadaro ◽  
V. Chiodo ◽  
G. Bonura ◽  
...  

2017 ◽  
Vol 434 ◽  
pp. 123-133 ◽  
Author(s):  
Ji Hwan Song ◽  
Sangbeom Yoo ◽  
Jaekyeong Yoo ◽  
Seungwon Park ◽  
Min Yeong Gim ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1875
Author(s):  
Prashanth Reddy Buchireddy ◽  
Devin Peck ◽  
Mark Zappi ◽  
Ray Mark Bricka

Amongst the issues associated with the commercialization of biomass gasification, the presence of tars has been one of the most difficult aspects to address. Tars are an impurity generated from the gasifier and upon their condensation cause problems in downstream equipment including plugging, blockages, corrosion, and major catalyst deactivation. These problems lead to losses of efficiency as well as potential maintenance issues resulting from damaged processing units. Therefore, the removal of tars is necessary in order for the effective operation of a biomass gasification facility for the production of high-value fuel gas. The catalytic activity of montmorillonite and montmorillonite-supported nickel as tar removal catalysts will be investigated in this study. Ni-montmorillonite catalyst was prepared, characterized, and tested in a laboratory-scale reactor for its efficiency in reforming tars using naphthalene as a tar model compound. Efficacy of montmorillonite-supported nickel catalyst was tested as a function of nickel content, reaction temperature, steam-to-carbon ratio, and naphthalene loading. The results demonstrate that montmorillonite is catalytically active in removing naphthalene. Ni-montmorillonite had high activity towards naphthalene removal via steam reforming, with removal efficiencies greater than 99%. The activation energy was calculated for Ni-montmorillonite assuming first-order kinetics and was found to be 84.5 kJ/mole in accordance with the literature. Long-term activity tests were also conducted and showed that the catalyst was active with naphthalene removal efficiencies greater than 95% maintained over a 97-h test period. A little loss of activity was observed with a removal decrease from 97% to 95%. To investigate the decrease in catalytic activity, characterization of fresh and used catalyst samples was performed using thermogravimetric analysis, transmission electron microscopy, X-ray diffraction, and surface area analysis. The loss in activity was attributed to a decrease in catalyst surface area caused by nickel sintering and coke formation.


2006 ◽  
Vol 3 (3) ◽  
pp. 346-350 ◽  
Author(s):  
Antonio Carlos Caetano de Souza ◽  
José Luz-Silveira ◽  
Maria Isabel Sosa

Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity. The use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7Nm3∕h of hydrogen as feedstock of a 1kW PEMFC. The global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206°C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700°C. However, when the temperature attains 700°C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700°C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However, the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.


2011 ◽  
Vol 36 (13) ◽  
pp. 7516-7522 ◽  
Author(s):  
Meng-Nan Chen ◽  
Dong-Yun Zhang ◽  
Levi T. Thompson ◽  
Zi-Feng Ma

Sign in / Sign up

Export Citation Format

Share Document