Utilizing Variably Integrated Spectral Frequency To Extract Entire Fluvial Systems

2018 ◽  
Author(s):  
Pongthep Thongsang
2017 ◽  
Author(s):  
Rebecca Anne Tisherman ◽  
◽  
Daniel J. Bain
Keyword(s):  

2020 ◽  
Author(s):  
Nathan A. Niemi ◽  
◽  
Adda Athanasopoulos-Zekkos ◽  
Cassandra Champagne ◽  
Marin K. Clark ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1608
Author(s):  
Salvatore Ivo Giano

This Special Issue deals with the role of fluvial geomorphology in landscape evolution and the impact of human activities on fluvial systems, which require river restoration and management [...]


Author(s):  
Laura Barral-Fraga ◽  
María Teresa Barral ◽  
Keeley L. MacNeill ◽  
Diego Martiñá-Prieto ◽  
Soizic Morin ◽  
...  

This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.


Geomorphology ◽  
2006 ◽  
Vol 79 (3-4) ◽  
pp. 152-171 ◽  
Author(s):  
L. Allan James ◽  
W. Andrew Marcus
Keyword(s):  

1970 ◽  
Vol 60 (5) ◽  
pp. 1547-1559 ◽  
Author(s):  
Bruce M. Douglas ◽  
Alan Ryall ◽  
Ray Williams

Abstract Fourier amplitude spectra were computed for 40 central Nevada microearthquakes, selected to consider, independently, effects of azimuth and distance from known sources. Spectra were averaged for groups of events to eliminate peculiarities of individual records and emphasize group characteristics. Spectral characteristics did not behave systematically as a function of azimuth from the recording site to the source, but peak spectral frequency was found to correlate strongly with event magnitude and to some degree also with focal distance. These preliminary results suggest that recordings of small earthquakes and microearthquakes can be used to provide detailed information on the character of seismic signals related to properties of the source and propagation path.


Sign in / Sign up

Export Citation Format

Share Document