scholarly journals DRAG & AVERSION PARTICLE SWARM OPTIMIZATION ALGORITHM FOR REDUCTION OF REAL POWER LOSS

2017 ◽  
Vol 5 (11) ◽  
pp. 168-176
Author(s):  
K. Lenin

This paper projects Drag & Aversion Particle Swarm Optimization (DAPSO) algorithm is applied to solve optimal reactive power problem. In DAPSO the idea of decreasing and increasing diversity operators used to control the population into the basic Particle Swarm Optimization (PSO) model. The modified model uses a diversity measure to have the algorithm alternate between exploring and exploiting behavior. The results show that both Drag & Aversion Particle Swarm Optimization (DAPSO) prevents premature convergence to enhanced level but still keeps a rapid convergence. Proposed Drag & Aversion Particle Swarm Optimization (DAPSO) has been tested in standard IEEE 118 & practical 191 bus test systems. Real power loss has been considerably reduced and voltage profiles are within the limits.

2018 ◽  
Vol 6 (2) ◽  
pp. 166-181
Author(s):  
K. Lenin

This paper presents Advanced Particle Swarm Optimization (APSO) algorithm for solving optimal reactive power problem. In this work Biological Particle swarm Optimization algorithm utilized to solve the problem by eliminating inferior population & keeping superior population, to make full use of population resources and speed up the algorithm convergence. Projected Advanced Particle Swarm Optimization (APSO) algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the superior performance of the proposed Advanced Particle Swarm Optimization (APSO) algorithm in reducing the real power loss and static voltage stability margin (SVSM) Index has been enhanced.


2018 ◽  
Vol 6 (12) ◽  
pp. 121-127
Author(s):  
K. Lenin

In this work Ant colony optimization algorithm (ACO) & particle swarm optimization (PSO) algorithm has been hybridized (called as APA) to solve the optimal reactive power problem. In this algorithm, initial optimization is achieved by particle swarm optimization algorithm and then the optimization process is carry out by ACO around the best solution found by PSO to finely explore the design space. In order to evaluate the proposed APA, it has been tested on IEEE 300 bus system and compared to other standard algorithms. Simulations results show that proposed APA algorithm performs well in reducing the real power loss.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hamza Yapıcı ◽  
Nurettin Çetinkaya

The power loss in electrical power systems is an important issue. Many techniques are used to reduce active power losses in a power system where the controlling of reactive power is one of the methods for decreasing the losses in any power system. In this paper, an improved particle swarm optimization algorithm using eagle strategy (ESPSO) is proposed for solving reactive power optimization problem to minimize the power losses. All simulations and numerical analysis have been performed on IEEE 30-bus power system, IEEE 118-bus power system, and a real power distribution subsystem. Moreover, the proposed method is tested on some benchmark functions. Results obtained in this study are compared with commonly used algorithms: particle swarm optimization (PSO) algorithm, genetic algorithm (GA), artificial bee colony (ABC) algorithm, firefly algorithm (FA), differential evolution (DE), and hybrid genetic algorithm with particle swarm optimization (hGAPSO). Results obtained in all simulations and analysis show that the proposed method is superior and more effective compared to the other methods.


2020 ◽  
Vol 5 (12) ◽  
pp. 246-255
Author(s):  
K. Lenin

This paper presents Tailored Particle Swarm Optimization (TPSO) algorithm for solving optimal reactive power problem. Particle Swarm optimization algorithm based on Membrane Computing is proposed to solve the problem. Tailored Particle Swarm Optimization (TPSO) algorithm designed with the framework and rules of a cell-like P systems, and particle swarm optimization with the neighbourhood search.  In order to evaluate the efficiency of the proposed algorithm, it has been tested on standard IEEE 118 & practical 191 bus test systems and compared to other specified algorithms. Simulation results show that Tailored Particle Swarm Optimization (TPSO) algorithm is superior to other algorithms in reducing the real power loss.


Author(s):  
Kanagasabai Lenin ◽  
Bhumanapally Ravindhranath Reddy ◽  
Munagala Surya Kalavathi

In this paper a Progressive particle swarm optimization algorithm (PPS) is used to solve optimal reactive power problem. A Particle Swarm Optimization algorithm maintains a swarm of particles, where each particle has position vector and velocity vector which represents the potential solutions of the particles. These vectors are modernized from the information of global best (Gbest) and personal best (Pbest) of the swarm. All particles move in the search space to obtain optimal solution. In this paper a new concept is introduced of calculating the velocity of the particles with the help of Euclidian Distance conception. This new-fangled perception helps in finding whether the particle is closer to Pbest or Gbest and updates the velocity equation consequently. By this we plan to perk up the performance in terms of the optimal solution within a rational number of generations. The projected PPS has been tested on standard IEEE 30 bus test system and simulation results show clearly the better performance of the proposed algorithm in reducing the real power loss with control variables are within the limits.


2018 ◽  
Vol 6 (6) ◽  
pp. 335-345
Author(s):  
K. Lenin

This paper presents Polar Particle Swarm optimization (PPSO) algorithm for solving optimal reactive power problem. The standard Particle Swarm Optimization (PSO) algorithm is an innovative evolutionary algorithm in which each particle studies its own previous best solution and the group’s previous best to optimize problems. In the proposed PPSO algorithm that enhances the behaviour of PSO and avoids the local minima problem by using a polar function to search for more points in the search space in order to evaluate the efficiency of proposed algorithm, it has been tested on IEEE 30 bus system and compared to other algorithms. Simulation results demonstrate good performance of the Polar Particle Swarm optimization (PPSO) algorithm in solving an optimal reactive power problem.


Author(s):  
K. Lenin

This paper presents Improved Frog Leaping (IFL) algorithm for solving optimal reactive power problem.  Comprehensive exploration capability of Particle Swarm Optimization (PSO) and   good local search ability of Frog Leaping Algorithm (FLA) has been hybridized to solve the reactive power problem and it overcomes the shortcomings of premature convergence. In order to evaluate the validity of the proposed Improved Frog Leaping (IFL) algorithm, it has been tested in Standard IEEE 57,118 bus systems and compared to other standard algorithms. Simulation results show that proposed Improved Frog Leaping (IFL) algorithm has reduced the real power loss considerably and voltage profiles are within the limits.


Sign in / Sign up

Export Citation Format

Share Document