scholarly journals MULTIPLICATIVE CONNECTIVITY STATUS NEIGHBORHOOD INDICES OF GRAPHS

The connectivity indices are applied to measure the chemical characteristics of compounds in Chemical Graph Theory. In this paper, we introduce the multiplicative atom bond connectivity status neighborhood index, multiplicative geometric-arithmetic status neighborhood index, multiplicative arithmetic-geometric status neighborhood index, multiplicative augmented status neighborhood index of a graph. Also we compute these newly defined indices for some standard graphs, wheel and friendship graphs.

The connectivity indices are applied to measure the chemical characteristics of compound in Chemical Graph Theory. In this paper, we introduce the sum connectivity Zagreb-K-Banhatti index and product connectivity Zagreb-K-Banhatti index of a graph. We provide lower and upper bounds for the sum connectivity Zagreb-K-Banhatti index and product connectivity Zagreb-K-Banhatti index of a graph in terms of Zagreb and K-Banhatti indices.


2020 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
Murat Cancan ◽  
Kerem Yamaç ◽  
Ziyattin Taş ◽  
Mehmet Şerif Aldemir

Carborundum, also known as silicon carbide which containing carbon and silicon, is a semiconductor. Molecular topological properties of physical substances are important tools to investigate the underlying topology of these substances. Ev-degree and ve-degree based on the molecular topological indices have been defined as parallel to their corresponding classical degree based topological indices in chemical graph theory. Classical degree based topological properties of carborundum have been investigated recently. As a continuation of these studies, in this study, we compute novel ve-degree harmonic, ve-degree sum-connectivity, ve-degree geometric-arithmetic, and ve-degree atom-bond connectivity, the first and the fifth harmonic molecular topological indices of two carborundum structures. 


2021 ◽  
Vol 44 (1) ◽  
pp. 165-172
Author(s):  
Yongsheng Rao ◽  
Ammarah Kanwal ◽  
Riffat Abbas ◽  
Saima Noureen ◽  
Asfand Fahad ◽  
...  

Abstract In the modern era of the chemical science, the chemical graph theory has contributed significantly to exploring the properties of the chemical compounds. Currently, the computation of the topological indices is one of the most active directions of the research in the area of the chemical graph theory. The main feature of the study of the topological indices is its its ability of predicting the various physio-chemical properties. In this article, we compute several degree-based topological indices for the caboxy-terminated dendritic macromolecule. We compute Harmonic index, atom-bond connectivity index, geometric arithmetic index, sum connectivity index, inverse sum index, symmetric division degree, and Zagreb indices for caboxy-terminated dendritic macromolecule. The obtained results have potential to predict biochemical properties such as viscosity, entropy, and boiling point.


Mathematics ◽  
2018 ◽  
Vol 6 (7) ◽  
pp. 126 ◽  
Author(s):  
Muhammad Imran ◽  
Muhammad Siddiqui ◽  
Amna Abunamous ◽  
Dana Adi ◽  
Saida Rafique ◽  
...  

Graph theory has much great advances in the field of mathematical chemistry. Chemical graph theory has become very popular among researchers because of its wide applications in mathematical chemistry. The molecular topological descriptors are the numerical invariants of a molecular graph and are very useful for predicting their bioactivity. A great variety of such indices are studied and used in theoretical chemistry, pharmaceutical researchers, in drugs and in different other fields. In this article, we study the chemical graph of an oxide network and compute the total eccentricity, average eccentricity, eccentricity based Zagreb indices, atom-bond connectivity (ABC) index and geometric arithmetic index of an oxide network. Furthermore, we give analytically closed formulas of these indices which are helpful in studying the underlying topologies.


2020 ◽  
Vol 18 (1) ◽  
pp. 1362-1369
Author(s):  
Farkhanda Afzal ◽  
Sabir Hussain ◽  
Deeba Afzal ◽  
Saira Hameed

AbstractChemical graph theory is a subfield of graph theory that studies the topological indices for chemical graphs that have a good correlation with chemical properties of a chemical molecule. In this study, we have computed M-polynomial of zigzag edge coronoid fused by starphene. We also investigate various topological indices related to this graph by using their M-polynomial.


2019 ◽  
Vol 17 (1) ◽  
pp. 955-962 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Zeshan Saleem Mufti ◽  
Muhammad Faisal Nadeem ◽  
Zaheer Ahmad ◽  
Muhammad Kamran Siddiqui ◽  
...  

AbstractAtoms displayed as vertices and bonds can be shown by edges on a molecular graph. For such graphs we can find the indices showing their bioactivity as well as their physio-chemical properties such as the molar refraction, molar volume, chromatographic behavior, heat of atomization, heat of vaporization, magnetic susceptibility, and the partition coefficient. Today, industry is flourishing because of the interdisciplinary study of different disciplines. This provides a way to understand the application of different disciplines. Chemical graph theory is a mixture of chemistry and mathematics, which plays an important role in chemical graph theory. Chemistry provides a chemical compound, and graph theory transforms this chemical compound into a molecular graphwhich further is studied by different aspects such as topological indices.We will investigate some indices of the line graph of the subdivided graph (para-line graph) of linear-[s] Anthracene and multiple Anthracene.


Author(s):  
Mohammed Alsharafi ◽  
Yusuf Zeren ◽  
Abdu Alameri

In chemical graph theory, a topological descriptor is a numerical quantity that is based on the chemical structure of underlying chemical compound. Topological indices play an important role in chemical graph theory especially in the quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR). In this paper, we present explicit formulae for some basic mathematical operations for the second hyper-Zagreb index of complement graph containing the join G1 + G2, tensor product G1 \(\otimes\) G2, Cartesian product G1 x G2, composition G1 \(\circ\) G2, strong product G1 * G2, disjunction G1 V G2 and symmetric difference G1 \(\oplus\) G2. Moreover, we studied the second hyper-Zagreb index for some certain important physicochemical structures such as molecular complement graphs of V-Phenylenic Nanotube V PHX[q, p], V-Phenylenic Nanotorus V PHY [m, n] and Titania Nanotubes TiO2.


Author(s):  
Eleanor Joyce Gardiner

The focus of this chapter will be the uses of graph theory in chemoinformatics and in structural bioinformatics. There is a long history of chemical graph theory dating back to the 1860’s and Kekule’s structural theory. It is natural to regard the atoms of a molecule as nodes and the bonds as edges (2D representations) of a labeled graph (a molecular graph). This chapter will concentrate on the algorithms developed to exploit the computer representation of such graphs and their extensions in both two and three dimensions (where an edge represents the distance in 3D space between a pair of atoms), together with the algorithms developed to exploit them. The algorithms will generally be summarized rather than detailed. The methods were later extended to larger macromolecules (such as proteins); these will be covered in less detail.


2008 ◽  
Author(s):  
Kimberly Jordan Burch

Sign in / Sign up

Export Citation Format

Share Document