Study on Data Transfer Methods for Fluid-Structure Interaction Analysis

2011 ◽  
Vol 255-260 ◽  
pp. 3579-3583
Author(s):  
Bo Su ◽  
Ruo Jun Qian ◽  
Xiang Ke Han

The data transfer method for fluid structure interaction analysis using compactly supported radial based function (CRBF-FSI) is studied. It builds transfer matrix for data exchange and makes fluid and structure mesh use different shape and density unrestrictedly. Example of data exchange on 3D interface is studied. The efficient and the accurate of CRBF-FSI method are analyzed and also the influence of different compactly-supported radius is studied. The results show that CRBF-FSI method is suitable for FSI data transfer on complicated interface if compactly-supported radius is properly chosen. It has a bright future in practical use such as wind-induced response analysis in Wind Engineering.

2021 ◽  
Author(s):  
Jonathan M Zalger

Presented is an investigation into the use of numerical methods for modelling the effects of inertial load on the human cardiovascular system. An anatomically correct geometry was developed based on three-dimensional computed tomography (CT) data and independent meshes were created for the solid and fluid regimes. These domains were simulated using independent solvers and subsequently coupled using an intermediate data transfer alogrithm. At the inlet of the arch, a pulsatile velocity boundary condition was enforced replicating the cardiac cycle. Time invariant, resistive boundary conditions were used at all outlets and a linear isotropic constitutive model was used for tissue response. Verification was conducted by comparing simulation results at standard earth gravity (9.81 m/s²) with published values for velocity, mass flow rate, deformation, and qualitative flow behaviour. The presented fluid-structure interaction (FSI) model shows strong agreement with accepted normal values. Inertial load was then applied along the longitudinal axis of the arch in multiples of standard gravity to a maximum of 8+Gz. This load increased arch flow velocities, and reduced mass flow in the ascending brachiocephalic and carotid arteries. Blood flow from the arch to the upper body and brain ceased near 8+Gz. Although the presented results are preliminary, the feasibility of such an analysis has been successfully demonstrated.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040119
Author(s):  
Tian-Xing Huang ◽  
Jian-Xin Ren ◽  
Pei Zhang

Coriolis mass flowmeter (CMF) is widely used in the industrial field. In mass flow measurement, there are many impurities in measured fluids that will adhere to the inner wall of the vibrating tube of CMF. The vibration characteristics of CMF would change due to the structural change, i.e., wall clung state, which will generate the wall clung state fault. In this paper, aiming at the wall clung state fault of CMF, the finite element model of CMF is established based on ANSYS. The velocity distribution of fluid in the vibrating tube of CMF is analyzed, considering the fluid–structure interaction. The location of the wall clung state in a vibrating tube is determined. Then, the fault model is established. The mechanism of the vibration transmission characteristics outwards of CMF caused by the wall clung state is analyzed by harmonic response analysis. Finally, the failure mode of CMF is investigated.


2021 ◽  
Author(s):  
Jonathan M Zalger

Presented is an investigation into the use of numerical methods for modelling the effects of inertial load on the human cardiovascular system. An anatomically correct geometry was developed based on three-dimensional computed tomography (CT) data and independent meshes were created for the solid and fluid regimes. These domains were simulated using independent solvers and subsequently coupled using an intermediate data transfer alogrithm. At the inlet of the arch, a pulsatile velocity boundary condition was enforced replicating the cardiac cycle. Time invariant, resistive boundary conditions were used at all outlets and a linear isotropic constitutive model was used for tissue response. Verification was conducted by comparing simulation results at standard earth gravity (9.81 m/s²) with published values for velocity, mass flow rate, deformation, and qualitative flow behaviour. The presented fluid-structure interaction (FSI) model shows strong agreement with accepted normal values. Inertial load was then applied along the longitudinal axis of the arch in multiples of standard gravity to a maximum of 8+Gz. This load increased arch flow velocities, and reduced mass flow in the ascending brachiocephalic and carotid arteries. Blood flow from the arch to the upper body and brain ceased near 8+Gz. Although the presented results are preliminary, the feasibility of such an analysis has been successfully demonstrated.


Sign in / Sign up

Export Citation Format

Share Document