scholarly journals A New Plan to Use Guide Fow Plates in Settling Basin for Increasing the Trap Efficiency

2018 ◽  
Vol 22 (3) ◽  
pp. 311-324
Author(s):  
K. Esmaili ◽  
S. seifi ◽  
H. salari ◽  
◽  
◽  
...  
2014 ◽  
Vol 14 ◽  
pp. 27-35 ◽  
Author(s):  
Hanne Nøvik ◽  
Abha Dudhraj ◽  
Nils ReidarBøe Olsen ◽  
Meg Bahadur Bishwakarma ◽  
Leif Lia

The settling basins for hydropower plants are designed to remove suspended sediments from the waterflow. The inlet geometry of the settling basin may cause formation of recirculation zones and high turbulence, which may lead to diminished trap efficiency, and as a consequence, turbine erosion. Most analytic approaches for calculating the trap efficiency of settling basins are based on the assumption of a uniform flow; hence, simplified one-dimensional equations are used to determine the velocity distribution and the turbulence characteristics of the flow. However, the velocity field in settling basins is often unevenly distributed, and the simplified equations are not always applicable. This study describes a new method for improving the assessment of settling basin performance. The idea is to extract values for the velocity distribution and the turbulence characteristics along the settling basins from computational fluid dynamic (CFD) models. The extracted CFD values are then used as input parameters to the standard analytical approaches for calculation of settling basin trap efficiency. This promising method is tested on a case study of a physical model of the settling basin for the Lower Manang Marsyangdi Hydropower Project in Nepal. The CFD calculations turn out to provide additional information to the sedimentation calculations in settling basins, and are useful for the assessment of different design alternatives at an early stage.DOI: http://dx.doi.org/10.3126/hn.v14i0.11251HYDRO Nepal JournalJournal of Water, Energy and EnvironmentVolume: 14, 2014, JanuaryPage: 27-35


1993 ◽  
Vol 27 (5-6) ◽  
pp. 105-110 ◽  
Author(s):  
F. H. L. R. Clemens ◽  
H. J. van Mameren ◽  
J. Kollen

The reduction in pollutional load realised by storm water settling basins is potentially reduced due to the occurrence of a partially mixed situation in the basin or due to resuspension of settled material. The decrease in efficiency can theoretically be avoided by means of partially bypassing the basin. In order to quantify the potential increase in efficiency a settling basin in Amersfoort is taken as an example. This basin seems to behave like an almost completely mixed system, bypassing would increase the overall efficiency from ca. 34 % to ca 39 % for three overflows. The dynamic behaviour of settling basins, scouring conditions and the boundary conditions for which settling basins are to be designed are the research needs for further development in the field of storm water settling basins.


2020 ◽  
Vol 14 ◽  

Sediment and flow dynamics in a sand trap of Golen Gol hydropower project in Pakistan was evaluated using a Computational Fluid Dynamics (CFD) model. Sediment Simulation in Intakes with Multi Block Options (SSIIM) CFD model was used to simulate the sediment and flow behavior in the sand trap. Numerical simulation results demonstrated that the horizontal and vertical component of velocities at any region of settling basin was less than the designed critical flow velocity of the sand trap. The design with respect to dimensions and proportioning of the sand trap were found appropriate for inducing low flow velocities throughout the settling basin of the sand trap supporting the deposition of sediments. The results obtained from simulation further presented the 100% removal of the desired sediments (particle size class ≥ 0.205 mm diameter) could be achieved in the sand trap. All this verify the design of sand trap is in accordance with the desired designed sediment removal efficiency of the sand trap.


Sign in / Sign up

Export Citation Format

Share Document