sand trap
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 2118 (1) ◽  
pp. 012002
Author(s):  
C D Rodríguez ◽  
J S De Plaza

Abstract Computational fluid dynamics is a tool that allows to simulate and observe the behavior of any fluid, based on a physical, hydraulic, and hydrodynamic analysis. This research analyses the behavior of the flow in a sand trap, which is a structure used to remove sand particles with a minimum size of 0.10 mm, prior to treatment in a drinking-water plant. The objective of this study is to determine the highest efficiency between two sand traps, one with a double smooth screen and the other with a double perforated screen (with diffusers), based on the simulation and analysis behavior of the flow inside each sand trap. The methodology used includes the traditional design of each unit based on Hazen’s model and Stokes viscosity law, to later carry out the numerical model simulation from Ansys Fluent (pre-processing, processing, and post-processing). The result shows that perforated double screen sand trap generates a removal efficiency of 78%, while the smooth double screen 28%. In addition, other four units of interleaved screens are proposed, in these cases efficiencies of up to 50% are observed and it is shown that it is necessary to implement at least two perforated screens (with diffusers) to guarantee an efficiency greater than 70%. Hydraulic simulation has a broad impact on infrastructure works and consulting.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2515
Author(s):  
Wolfgang Richter ◽  
Kaspar Vereide ◽  
Gašper Mauko ◽  
Ola H. Havrevoll ◽  
Josef Schneider ◽  
...  

Unlined pressure tunnels in sound rock, combined with pressurized sand traps at the downstream end, allow for low-cost construction of hydropower tunnel systems. This design concept is utilized in hydropower plants across the world. Currently, many such power plants are being upgraded with higher installed capacity, which may result in challenges with the sand trap efficiency. A physical scale model test, accompanied by 3D CFD simulations of a case study pressurized sand trap, has been studied for economic retrofitting. The geometric model scale is 1:36.67 while the velocity scale and sediment scale are 1:1 (same average flow velocity and sediment size in model and prototype). This is currently an uncommon scaling approach but with several advantages, as presented in this paper. Various options for retrofitting were investigated. A combined structure of ramp and ribs was found to significantly improve the sediment trap efficiency. The main novelties from this work are the proposed design of the combined ramp and rib structure. Secondary results include an efficient setup for physical scale models of pressurized sand traps and a methodology that combines the benefits of 3D CFD simulations with physical scale models testing for sand trap engineering and design.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3882
Author(s):  
Mads Mehus Ivarson ◽  
Chirag Trivedi ◽  
Kaspar Vereide

In order to increase the lifespan of hydraulic turbines in hydropower plants, it is necessary to minimize damages caused by sediment erosion. One solution is to reduce the amount of sediments by improving the design of sand trap. In the present work, the effects on sand trap efficiency by installing v-shaped rake structures for flow distribution and rib structures for sediment trapping is investigated numerically using the SAS–SST turbulence model. The v-shaped rake structures are located in the diffuser near the inlet of the sand trap, while the ribs cover a section of the bed in the downstream end. Three-dimensional models of the sand trap in Tonstad hydropower plant are created. The present study showed that integrating rib type structure can reduce the total weight of sediments escaping the sand trap by 24.5%, which leads to an improved sand trap efficiency. Consequently, the head loss in the sand trap is increased by 1.8%. By additionally including the v-shaped rakes, the total weight of sediments escaping the sand trap is instead increased by 48.5%, thus worsening the sand trap efficiency. This increases head loss by 12.7%. The results also show that turbulent flow commencing at the sand trap diffuser prevents the downstream settling of sediments with a diameter of less than one millimeter. The hydraulic representation of the numerical model is validated by comparison with particle image velocimetry measurements of the flow field from scale experiments and ADCP measurements from the prototype. The tested rib design has not previously been installed in a hydropower plant, and can be recommended. The tested v-shaped rakes have been installed in existing hydropower plants, but this practice should be reconsidered.


2021 ◽  
Vol 653 (1) ◽  
pp. 012098
Author(s):  
A G Pradipta ◽  
G I Nafisa ◽  
Murtiningrum ◽  
C Setyawan ◽  
S S Arif
Keyword(s):  

Author(s):  
Zh. K. Kassymbekov ◽  
G. Zh. Kassymbekov

The goal of the project is to develop and use a hydrocyclone sand trap to improve the operation of a mini hydroelectric power station. In contrast to the existing design of a similar type of hydroelectric power station, a bulky sump for water purification has been replaced with an efficient hydrocyclone device. Due to this, a simplification of the design of the HPP is achieved, an increase in the degree of sand collection from the composition of the water used. Research methods. The initial data for the calculation were taken: the flow rate of water passing through the hydrocyclone and the pressure drop at the inlet and outlet of the hydrocyclone. Computer simulation of the process was carried out using the SolidWorks software (flow simulation). The main technological parameters and a rational mode of operation were established by testing experimental samples both in laboratory and in production conditions. Research results. In the established mode, the density of clarified water is equal to 1.009 ... 1.050 t / m3, and the degree of purification is 91 ... 97%. Replacing a bulky reinforced concrete sump with hydrocyclone sand traps of a simplified design reduces the cost of building a water treatment unit from 30% (existing) to 7%. This makes it possible to expand the volume of development of small hydroelectric power plants, especially in mountainous conditions.


2021 ◽  
Vol 21 (8) ◽  
pp. 85-90
Author(s):  
G.I. Loginov ◽  
◽  
B.B. Kurumshiev ◽  
I.K. Amerkhanov ◽  
A.N. Ismailov ◽  
...  

2020 ◽  
Vol 14 ◽  

Sediment and flow dynamics in a sand trap of Golen Gol hydropower project in Pakistan was evaluated using a Computational Fluid Dynamics (CFD) model. Sediment Simulation in Intakes with Multi Block Options (SSIIM) CFD model was used to simulate the sediment and flow behavior in the sand trap. Numerical simulation results demonstrated that the horizontal and vertical component of velocities at any region of settling basin was less than the designed critical flow velocity of the sand trap. The design with respect to dimensions and proportioning of the sand trap were found appropriate for inducing low flow velocities throughout the settling basin of the sand trap supporting the deposition of sediments. The results obtained from simulation further presented the 100% removal of the desired sediments (particle size class ≥ 0.205 mm diameter) could be achieved in the sand trap. All this verify the design of sand trap is in accordance with the desired designed sediment removal efficiency of the sand trap.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2937
Author(s):  
Matthijs Rietveld ◽  
Demi de Rijke ◽  
Jeroen Langeveld ◽  
Francois Clemens

Urban runoff (re)mobilises solids present on the street surface and transport them to urban drainage systems. The solids reduce the hydraulic capacity of the drainage system due to sedimentation and on the quality of receiving water bodies due to discharges via outfalls and combined sewer overflows (CSOs) of solids and associated pollutants. To reduce these impacts, gully pots, the entry points of the drainage system, are typically equipped with a sand trap, which acts as a small settling tank to remove suspended solids. This study presents data obtained using Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurements in a scale 1:1 gully to quantify the relation between parameters such as the gully pot geometry, discharge, sand trap depth, and sediment bed level on the flow field and subsequently the settling and erosion processes. The results show that the dynamics of the morphology of the sediment bed influences the flow pattern and the removal efficiency in a significant manner, prohibiting the conceptualization of a gully pot as a completely mixed reactor. Resuspension is initiated by the combination of both high turbulent fluctuations and high mean flow, which is present when a substantial bed level is present. In case of low bed levels, the overlaying water protects the sediment bed from erosion.


2020 ◽  
Vol 10 (19) ◽  
pp. 6691
Author(s):  
Satoshi Irei

A method involving fast large-volume sampling and bag extraction of total gaseous mercury (TGM) using a 5 mL acid solution was developed for stable mercury isotope ratio measurements. A big gold-coated sand trap (BAuT)—a 45 (i.d.) × 300 mm (length) quartz tube with 131 times more trapping material than a conventional gold trap—was used for the collection of a large amount of TGM. The collected TGM was extracted using 5 mL inversed aqua regia in a 2 L Tedlar bag followed by isotope measurements using a cold vapor generator coupled with a multicollector inductively coupled plasma mass spectrometer. Sampling tests demonstrated that the collection efficiency of the BAuT was 99.9% or higher during the 1–24 h sampling period under the flow rate of 20–100 L min−1. Recovery tests of 24 h bag extraction using 100 ng NIST SRM 8610 exhibited nearly 100% recovery yields. The five measured stable mercury isotope ratios agreed with reference values within 2σ intervals. The overall methodology tested during the pilot field and laboratory studies demonstrated its successful application in analysis, promising highly precise stable mercury isotopic data with a time resolution of less than 24 h.


Sign in / Sign up

Export Citation Format

Share Document