scholarly journals Role of oral gabapentin in attenuating cardiovascular response to laryngoscopy and tracheal intubation.

2020 ◽  
Vol 27 (07) ◽  
pp. 1470-1475
Author(s):  
Mohsin Riaz Askri ◽  
Shumyala Maqbool ◽  
Kausar Abbas Shah ◽  
Shahbaz Ahmad

Objectives: To determine the role of 800 mg oral gabapentin in attenuating cardiovascular response to laryngoscopy and tracheal intubation. Study Design: Double Blind Randomized Control Trial. Setting: Independent University Hospital/Independent Medical College, Faisalabad, Pakistan. Period: Six months from January1st 2019 to June 30th 2019. Material & Methods: This study included 60 patients which were divided into two equal groups. 800 mg oral gabapentin was given to group I while capsule placebo was administrated to group II patients in pre-operative area one hour prior to surgery. Heart rate, systolic, diastolic and mean arterial blood pressure were taken after induction of anesthesia at base line and then 1,2,3,4,5,10 and 15 minutes after endotracheal intubation. SPSS version 11 was used to analyze the data. Heart rate systolic, diastolic and mean arterial blood pressure were dependent variables while placebo and gabapentin were independent variables. Results: Out of total 60 patients there were 36 (60 %) males and 24 (40 %) females. In group I mean age was 37.1 while in group II it was 36.3. As compare to group II there was decreased cardiovascular response in group I. There was a significant decrease in systolic blood pressure at 1,2 and 10 minutes; diastolic blood pressure at 3 minutes; heart rate at 10 and 15 minutes and mean arterial blood pressure at 3 minutes after induction in group I. Conclusion: Cardiovascular response to laryngoscopy and intubation is significantly reduced with oral gabapentin.

1991 ◽  
Vol 81 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Marohito Murakami ◽  
Hiromichi Suzuki ◽  
Atsuhiro Ichihara ◽  
Mareo Naitoh ◽  
Hidetomo Nakamoto ◽  
...  

1. The effects of l-arginine on systemic and renal haemodynamics were investigated in conscious dogs. l-Arginine was administered intravenously at doses of 15 and 75 μmol min−1 kg−1 for 20 min. 2. Mean arterial blood pressure, heart rate and cardiac output were not changed significantly by l-arginine infusion. However, l-arginine infusion induced a significant elevation of renal blood flow from 50 ± 3 to 94 ± 12 ml/min (means ± sem, P < 0.01). 3. Simultaneous infusion of NG-monomethyl-l-arginine (0.5 μmol min−1 kg−1) significantly inhibited the increase in renal blood flow produced by l-arginine (15 μmol min−1 kg−1) without significant changes in mean arterial blood pressure or heart rate. 4. Pretreatment with atropine completely inhibited the l-arginine-induced increase in renal blood flow, whereas pretreatment with indomethacin attenuated it (63 ± 4 versus 82 ± 10 ml/min, P < 0.05). 5. A continuous infusion of l-arginine increased renal blood flow in the intact kidney (55 ± 3 versus 85 ± 9 ml/min, P < 0.05), but not in the contralateral denervated kidney (58 ± 3 versus 56 ± 4 ml/min, P > 0.05). 6. These results suggest that intravenously administered l-arginine produces an elevation of renal blood flow, which may be mediated by facilitation of endogenous acetylcholine-induced release of endothelium-derived relaxing factor and vasodilatory prostaglandins.


1991 ◽  
Vol 261 (2) ◽  
pp. R420-R426
Author(s):  
M. Inoue ◽  
J. T. Crofton ◽  
L. Share

We have examined in conscious rats the interaction between centrally acting prostanoids and acetylcholine in the stimulation of vasopressin secretion. The intracerebroventricular (icv) administration of carbachol (25 ng) resulted in marked transient increases in the plasma vasopressin concentration and mean arterial blood pressure and a transient reduction in heart rate. Central cyclooxygenase blockade by pretreatment icv with either meclofenamate (100 micrograms) or indomethacin (100 micrograms) virtually completely blocked these responses. Prostaglandin (PG) D2 (20 micrograms icv) caused transient increases in the plasma vasopressin concentration (much smaller than after carbachol) and heart rate, whereas mean arterial blood pressure rose gradually during the 15-min course of the experiment. Pretreatment with the muscarinic antagonist atropine (10 micrograms icv) decreased the peak vasopressin response to icv PGD2 by approximately one-third but had no effect on the cardiovascular responses. We conclude that the stimulation of vasopressin release by centrally acting acetylcholine is dependent on increased prostanoid biosynthesis. On the other hand, stimulation of vasopressin release by icv PGD2 is partially dependent on activation of a cholinergic pathway.


1992 ◽  
Vol 262 (1) ◽  
pp. H149-H156 ◽  
Author(s):  
U. Palm ◽  
W. Boemke ◽  
H. W. Reinhardt

The existence of urinary excretion rhythms in dogs, which is a matter of controversy, was investigated under strictly controlled intake and environmental conditions. In seven conscious dogs, 14.5 mmol Na, 3.55 mmol K, and 91 ml H2O.kg body wt-1.24 h-1 were either administered with food at 8:30 A.M. or were continuously infused at 2 consecutive days. During these 3 days, automatized 20-min urine collections, mean arterial blood pressure (MABP), and heart rate (HR) recordings were performed without disturbing the dogs. Fundamental and partial periodicities, the noise component of urinary sodium excretion (UNaV), MABP, and HR were analyzed using a method derived from Fourier and Cosinor analysis. Oral intake (OI) leads to powerful 24-h periodicities in all dogs and seems to synchronize UNaV. UNaV on OI peaked between 1 and 3 P.M. Under the infusion regimen, signs of nonstationary rhythms and desynchronization predominated. UNaV under the infusion regimen could be separated into two components: a rather constant component continuously excreted and superimposed to this an oscillating component. No direct coupling between UNaV and MABP periodicities could be demonstrated. On OI, an increase in HR seems to advance the peak UNaV in the postprandial period. HR and MABP signals were both superimposed with noise. We conclude that UNaV rhythms are present in dogs. They are considerably more pronounced on OI.


1992 ◽  
Vol 263 (3) ◽  
pp. R602-R608
Author(s):  
W. W. Burggren ◽  
J. E. Bicudo ◽  
M. L. Glass ◽  
A. S. Abe

Systemic arterial blood pressure and heart rate (fH) were measured in unanesthetized, unrestrained larvae and adults of the paradoxical frog, Pseudis paradoxus from Sao Paulo State in Brazil. Four developmental groups were used, representing the complete transition from aquatic larvae to primarily air-breathing adults. fH (49-66 beats/min) was not significantly affected by development, whereas mean arterial blood pressure was strongly affected, being lowest in the stage 37-39 larvae (10 mmHg), intermediate in the stage 44-45 larvae (18 mmHg), and highest in the juveniles and adults (31 and 30 mmHg, respectively). Blood pressure was not significantly correlated with body mass, which was greatest in the youngest larvae and smallest in the juveniles. In the youngest larvae studied (stages 37-39), lung ventilation was infrequent, causing a slight decrease in arterial blood pressure but no change in heart rate. Lung ventilation was more frequent in stages 44-45 larvae and nearly continuous in juveniles and adults floating at the surface. Bradycardia during both forced and voluntary diving was observed in almost every advanced larva, juvenile, and adult but in only one of four young larvae. Developmentally related changes in blood pressure were not complete until metamorphosis, whereas diving bradycardia was present at an earlier stage.


1998 ◽  
Vol 85 (4) ◽  
pp. 1285-1291 ◽  
Author(s):  
Sandrine H. Launois ◽  
Joseph H. Abraham ◽  
J. Woodrow Weiss ◽  
Debra A. Kirby

Patients with obstructive sleep apnea experience marked cardiovascular changes with apnea termination. Based on this observation, we hypothesized that sudden sleep disruption is accompanied by a specific, patterned hemodynamic response, similar to the cardiovascular defense reaction. To test this hypothesis, we recorded mean arterial blood pressure, heart rate, iliac blood flow and vascular resistance, and renal blood flow and vascular resistance in five pigs instrumented with chronic sleep electrodes. Cardiovascular parameters were recorded during quiet wakefulness, during non-rapid-eye-movement and rapid-eye-movement sleep, and during spontaneous and induced arousals. Iliac vasodilation (iliac vascular resistance decreased by −29.6 ± 4.1% of baseline) associated with renal vasoconstriction (renal vascular resistance increased by 10.3 ± 4.0%), tachycardia (heart rate increase: +23.8 ± 3.1%), and minimal changes in mean arterial blood pressure were the most common pattern of arousal response, but other hemodynamic patterns were observed. Similar findings were obtained in rapid-eye-movement sleep and for acoustic and tactile arousals. In conclusion, spontaneous and induced arousals from sleep may be associated with simultaneous visceral vasoconstriction and hindlimb vasodilation, but the response is variable.


2004 ◽  
Vol 96 (3) ◽  
pp. 865-870 ◽  
Author(s):  
Denise M. O'Driscoll ◽  
Guy E. Meadows ◽  
Douglas R. Corfield ◽  
Anita K. Simonds ◽  
Mary J. Morrell

The cardiovascular response to an arousal occurring at the termination of an obstructive apnea is almost double that to a spontaneous arousal. We investigated the hypothesis that central plus peripheral chemoreceptor stimulation, induced by hypercapnic hypoxia (HH), augments the cardiovascular response to arousal from sleep. Auditory-induced arousals during normoxia and HH (>10-s duration) were analyzed in 13 healthy men [age 24 ± 1 (SE) yr]. Subjects breathed on a respiratory circuit that held arterial blood gases constant, despite the increased ventilation associated with arousal. Arousals were associated with a significant increase in mean arterial blood pressure at 5 s ( P < 0.001) and with a significant decrease in the R-R interval at 3 s ( P < 0.001); however, the magnitude of the changes was not significantly different during normoxia compared with HH (mean arterial blood pressure: normoxia, 91 ± 4 to 106 ± 4 mmHg; HH, 91 ± 4 to 109 ± 5 mmHg; P = 0.32; R-R interval: normoxia, 1.12 ± 0.04 to 1.02 ± 0.05 s; HH, 1.09 ± 0.05 to 0.92 ± 0.04 s; P = 0.78). Mean ventilation increased significantly at the second breath postarousal for both conditions ( P < 0.001), but the increase was not significantly different between the two conditions (normoxia, 5.35 ± 0.40 to 9.57 ± 1.69 l/min; HH, 8.57 ± 0.63 to 11.98 ± 0.70 l/min; P = 0.71). We conclude that combined central and peripheral chemoreceptor stimulation with the use of HH does not interact with the autonomic outflow associated with arousal from sleep to augment the cardiovascular response.


1991 ◽  
Vol 261 (4) ◽  
pp. H982-H988
Author(s):  
J. H. Sindrup ◽  
J. Kastrup ◽  
H. Christensen ◽  
B. Jorgensen

Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit were used for measurement of blood flow rates. An automatic portable blood pressure recorder and processor unit was used for measurement of systolic blood pressure, diastolic blood pressure, and heart rate every 15 min. The change from upright to supine position at the beginning of the night period was associated with a 30-40% increase in blood flow rate and a highly significant decrease in mean arterial blood pressure and heart rate (P less than 0.001 for all). Approximately 100 min after the subjects went to sleep an additional blood flow rate increment (mean 56%) and a simultaneous significant decrease in mean arterial blood pressure (P less than 0.001) were observed. The duration of this hyperemic phase was 116 min. A highly significant reduction of the subcutaneous vascular resistance (50%) was demonstrated during the hyperemic blood flow rate phase compared with the surrounding phases (P less than 0.0001). The synchronism of the nocturnal subcutaneous hyperemia and the decrease in systemic mean arterial blood pressure point to a common, possibly central nervous or humoral, eliciting mechanism.


1986 ◽  
Vol 61 (1) ◽  
pp. 271-279 ◽  
Author(s):  
C. L. Stebbins ◽  
J. C. Longhurst

We examined the contribution of bradykinin to the reflex hemodynamic response evoked by static contraction of the hindlimb of anesthetized cats. During electrical stimulation of ventral roots L7 and S1, we compared the cardiovascular responses to hindlimb contraction before and after the following interventions: inhibition of converting enzyme (kininase II) with captopril (3–4 mg/kg, n = 6); inhibition of kallikrein activity with aprotinin (Trasylol, 20,000–30,000 KIU/kg, n = 8); and injection of carboxypeptidase B (500–750 U/kg, n = 7). Treatment with captopril augmented the rise in mean arterial blood pressure and maximal time derivative of pressure (dP/dt) caused by static contraction from 21 +/- 3 to 39 +/- 7 mmHg and 1,405 +/- 362 to 2,285 +/- 564 mmHg/s, respectively. Aprotinin attenuated the contraction-induced rise in mean arterial blood pressure (28 +/- 4 to 9 +/- 2 mmHg) and maximal dP/dt (1,284 +/- 261 to 469 +/- 158 mmHg/s). Carboxypeptidase B reduced the cardiovascular response to static contraction. Thus the mean arterial blood pressure response was decreased from 36 +/- 12 to 24 +/- 11 mmHg, maximal dP/dt from 1,618 +/- 652 to 957 +/- 392 mmHg/s, and heart rate from 12 +/- 2 to 7 +/- 1 beats/min. These data suggest that stimulation of muscle afferents by bradykinin contributes to a portion of the reflex cardiovascular response to static contraction.


Sign in / Sign up

Export Citation Format

Share Document