scholarly journals Poly(Methacryloiloxy-o-Benzoic Acid) as Drug Carrier for Controlled Release

2017 ◽  
Vol 58 (4) ◽  
Author(s):  
José Manuel Cornejo-Bravo ◽  
Víctor Gómez Reséndiz ◽  
Aracely Serrano-Medina ◽  
Eugenia Gabriela Carrillo-Cedillo ◽  
Manuel Cornejo

<p>Poly(methacryloiloxy-<em>o</em>-benzoic acid), an amphiphilic weak polyelectrolyte was bound by secondary forces to cationic drugs (propranolol. HCl and labetalol.HCl) to form water-insoluble complexes that release the bound drug only in ionic media. Compressed tablets were prepared from the polymer-drug complexes formed. The complex with propranolol suffers a fast release in simulated gastric fluid (pH 1.2), but presents a diffusion controlled release at pH 6.8 and 7.4. Moreover, the complex with labetalol (a less water soluble drug) presents controlled release at the three pH values studied. In this case, release is controlled by the erosion of the tablets. The results indicate that PMAOB is a good carrier for oral release of poorly soluble cationic drugs.</p>

2021 ◽  
Vol 71 (5) ◽  
pp. 393-409
Author(s):  
Earle Radha-Rani ◽  
Gadela Venkata-Radha

In the present study, co-crystals (CCs) of Paliperidone (PPD) with coformers like benzoic acid (BA) and P-amino benzoic acid (PABA) were synthesized and characterized to improve the physicochemical properties and dissolution rate. CCs were prepared by the solvent evaporation (SE) technique and were compared with the products formed by neat grinding (NG) and liquid assisted grinding (LAG) in their enhancement of solubility. The formation of CCs was confirmed by the IR spectroscopy, powder X-ray diffraction and thermal analysis methods. The saturation solubility studies indicate that the aqueous solubility of PPD-BA and PPD-PABA CCs was significantly improved to 1.343±0.162mg/ml and 1.964±0.452mg/ml, respectively, in comparison with the PPD solubility of 0.473mg/ml. This increase in solubility is 2.83-and 3.09-fold, respectively. PPD exhibited a poor dissolution of 37.8% in 60min, while the dissolution of the CCs improved tremendously to 96.07% and 89.65% in 60min. CCs of PPD with BA and PABA present a novel approach to overcome the solubility challenges of poorly water-soluble drug PPD.


2011 ◽  
Vol 393-395 ◽  
pp. 119-122
Author(s):  
Dong Hua Wan ◽  
Fen Lin ◽  
Qu Xiang Liao

It’s well known that curcumin is practically insoluble in water. Therefore, to improve the drug dissolution rate, fusion approach was employed to prepare curcumin solid dispersions (SDs) in the carrier Pluronic F68 with three different drug loads. The dissolution rate of curcumin from the SDs was measured at simulated gastric fluid. The concentration of the dissolved drug in the medium was determined by HPLC. The dissolution rates of the formulations were dependent on the drug loading in SDs. 92.2% CUR was dissolved in 10 min from the SDs with 8.97% drug load, whereas the amounts of drug released were 65.8% and 84.2% within 120 min from the SDs with 18.9% and 29.0% drug loads, respectively. The Fourier transform infrared spectra indicated hydrogen bond between the drug and carrier. Furthermore, their physicochemical properties were well investigated using differential scanning calorimetry and X-ray diffraction. In the dispersions containing 8.97% CUR, the drug was in the molecular state. At a composition of approximately 18.9%, CUR was dispersed as micro-fine crystals. These interesting results indicate that the physical states of the drug in the carrier, which are governed by the drug loading, can affect the dissolution rate improvement.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1624
Author(s):  
Lili Qin ◽  
Xinyu Zhao ◽  
Yiwei He ◽  
Hongqiang Wang ◽  
Hanjing Wei ◽  
...  

Resveratrol is a natural active ingredient found in plants, which is a polyphenolic compound and has a variety of pharmaceutical uses. Resveratrol-loaded TEMPO-oxidized cellulose aerogel (RLTA) was prepared using a freeze-drying method, employing high speed homogenization followed by rapid freezing with liquid nitrogen. RLTAs were designed at varying drug–cellulose aerogel ratios (1:2, 2:3, 3:2, and 2:1). It could be seen via scanning electron microscopy (SEM) that Res integrated into TEMPO-oxidized cellulose (TC) at different ratios, which changed its aggregation state and turned it into a short rod-like structure. Fourier transform infrared (FTIR) spectra confirmed that the RLTAs had the characteristic peaks of TC and Res. In addition, X-ray diffraction (XRD) demonstrated that the grain size of RLTA was obviously smaller than that of pure Res. RLTAs also had excellent stability in both simulated gastric fluid and phosphate buffer solution. The drug release rate was initially completed within 5 h under a loading rate of 30.7 wt%. The results of an MTT assay showed the low toxicity and good biocompatibility of the RLTAs. TC aerogel could be a promising drug carrier that may be widely used in designing and preparing novel biomedicine.


2021 ◽  
Vol 44 (1) ◽  
pp. 15-29
Author(s):  
Aqsa Siraj ◽  
Muhammad Nasiri ◽  
Syed Naqvi ◽  
Tariq Ali ◽  
Rabia Yousaf ◽  
...  

2018 ◽  
Vol 8 (6-s) ◽  
pp. 5-8 ◽  
Author(s):  
Rinshi Agrawal ◽  
RK Maheshwari

Application of mixed solvency has been employed in the present research work to develop a liquisolid system (Powder formulation) of poorly water soluble drug, cefixime (as model drug). Material and Methods: For poorly water soluble drug cefixime, combination of solubilizers such as sodium acetate, sodium caprylate and propylene glycol as mixed solvent systems were used to decrease the overall concentration of solubilizers required to produce substantial increase in solubility and thereby resulting in enhanced drug loading capacity of cefixime. The procured sample of cefixime was characterized by melting point, IR, UV and DSC studies. Stability studies of liquisolid system of cefixime were performed for two months at room temperature, 30˚C and 40˚C. All the formulations were physically, chemically, and microbiologically stable. Conclusion: Mixed solvency concept has been successfully employed for enhancing the drug loading of poorly water soluble drug, cefixime. Keywords: Solubility, cefixime, liquisolid system, mixed solvency concept.


Author(s):  
Nagaraju. P ◽  
Krishnachaithanya. K ◽  
Srinivas. V.D.N ◽  
Padma. S.V.N

One of the critical problems associated with poorly soluble drugs is low bioavailability and or erratic absorption. The problem is even more complex for drugs such as itraconazole and Carbamazepine (belonging to BCS CLASS II) as they are poorly soluble in both aqueous and organic media, and for those drugs having a log P value of 2. There are number of formulation approaches to resolve the problems of low solubility and low bioavailability. But all those have some limitations and hence have limited utility in solubility enhancement. Nanotechnology can be used to resolve these problems associated with conventional approaches. Nanotechnology is defined as the science and engineering carried out in the nanoscale that is 10-9 meters. Nanosuspensions consist of the pure poorly water-soluble drug without any matrix material suspended in dispersion. A nanosuspension not only solves the problems of poor solubility and bioavailability but also alters the pharmacokinetics of drug and thus improves drug safety and efficacy


Author(s):  
Kiran Kumar Vangara ◽  
Kishore K. Konda ◽  
Shiva K. Ravula ◽  
Pradeep K Vuppala ◽  
Vijay K. Sripuram ◽  
...  

It is challenging to develop a controlled release (CR) formulation for a freely water soluble drug molecule without using rate controlling polymers in the core matrix. This study is aimed to develop and evaluate cost-effective ethyl cellulose (EC)-polyvinyl pyrrolidone (PVP) film coating that can effectively control the release of freely water soluble drug, metoprolol succinate (MS) and to match that of release profile with its marketed tablet. Simple core tables of MS were compressed and coated with a solution composed of hydrophobic rate controlling polymer, EC and water soluble pore forming polymer, PVP. The effect of formulation parameters such as the ratio of EC to PVP and tablet coating weight gain on the in-vitro drug release were evaluated. Release profile of the optimized formulation at different pH conditions was determined and the similarity factor (f2) with marketed release profile was calculated.It was observed that drug release rate increased with a decrease in the ratio of ethyl cellulose to PVP and decreased with increased weight gain of the coating membrane. Among all the formulations, the formulation with EC and PVP at a ratio of 60:40 %w/w and 9% weight gain showed matching release profile to marketed tablet with f2 value of 72.25. The optimized formulation showed pH independent in-vitro release. This study successfully demonstrated that EC-PVP film coating can effectively control the release rate of freely soluble drugs. Once a day CR formulation of metoprolol succinate pharmaceutically equivalent to marketed tablet was developed.  


Sign in / Sign up

Export Citation Format

Share Document