scholarly journals Predictive Models of Yellowtail Flounder Bycatch in the U.S. Sea Scallop Fishery on Georges Bank

2021 ◽  
Vol 52 ◽  
pp. 1-18 ◽  
Author(s):  
B A Lowman ◽  
C E O’Keefe ◽  
S X Cadrin
2009 ◽  
Vol 18 (3) ◽  
pp. 173-184 ◽  
Author(s):  
RUCHENG C. TIAN ◽  
CHANGSHENG CHEN ◽  
KEVIN D. E. STOKESBURY ◽  
BRIAN J. ROTHSCHILD ◽  
QICHUN XU ◽  
...  

2009 ◽  
Vol 66 (10) ◽  
pp. 2155-2164 ◽  
Author(s):  
Rucheng C. Tian ◽  
Changsheng Chen ◽  
Kevin D. E. Stokesbury ◽  
Brian J. Rothschild ◽  
Geoffrey W. Cowles ◽  
...  

Abstract Tian, R. C., Chen, C., Stokesbury, K. D. E., Rothschild, B. J., Cowles, G. W., Xu, Q., Hu, S., Harris, B. P., and Marino II, M. C. 2009. Dispersal and settlement of sea scallop larvae spawned in the fishery closed areas on Georges Bank. – ICES Journal of Marine Science, 66: 2155–2164. Three fishery closed areas in the Georges Bank (GB) region were implemented in 1994 to protect depleted groundfish stocks for population replenishment. However, the drift and ultimate destination of larvae spawned in the closed areas have not been analysed specifically within the framework of ocean currents. To assess the efficiency of the closed areas as population replenishment sources, we conducted a simulation-based analysis on the dispersal and settlement of sea scallop larvae spawned in the closed areas from 1995 to 2005 using circulation fields computed by the Finite-Volume Coastal Ocean Model, scallop survey data, and a population dynamics model. Closed area I located in the Great Southern Channel (GSC) had a persistently high rate of larval retention (86% on average). For closed area II located on eastern GB, a considerable quantity of larvae was dispersed out of the domain. For the Nantucket Lightship Closed Area located on Nantucket Shoals, larvae consistently drifted away from the region during the 11 years simulated. Our simulation revealed three high-retention regions that are the most suitable for closed-area selection and rotational fishery management in terms of larval supply to the GB–GSC region.


2010 ◽  
Vol 106 (3) ◽  
pp. 460-467 ◽  
Author(s):  
Charles F. Adams ◽  
Bradley P. Harris ◽  
Michael C. Marino ◽  
Kevin D.E. Stokesbury
Keyword(s):  

2012 ◽  
Vol 95 (3) ◽  
pp. 795-812 ◽  
Author(s):  
Frances M Van Dolah ◽  
Spencer E Fire ◽  
Tod A Leighfield ◽  
Christina M Mikulski ◽  
Gregory J Doucette ◽  
...  

Abstract A collaborative study was conducted on a microplate format receptor binding assay (RBA) for paralytic shellfish toxins (PST). The assay quantifies the composite PST toxicity in shellfish samples based on the ability of sample extracts to compete with 3H saxitoxin (STX) diHCl for binding to voltage- gated sodium channels in a rat brain membrane preparation. Quantification of binding can be carried out using either a microplate or traditional scintillation counter; both end points were included in this study. Nine laboratories from six countries completed the study. One laboratory analyzed the samples using the precolumn oxidation HPLC method (AOAC Method 2005.06) to determine the STX congener composition. Three laboratories performed the mouse bioassay (AOAC Method 959.08). The study focused on the ability of the assay to measure the PST toxicity of samples below, near, or slightly above the regulatory limit of 800 (μg STX diHCl equiv./kg). A total of 21 shellfish homogenates were extracted in 0.1 M HCl, and the extracts were analyzed by RBA in three assays on separate days. Samples included naturally contaminated shellfish samples of different species collected from several geographic regions, which contained varying STX congener profiles due to their exposure to different PST-producing dinoflagellate species or differences in toxin metabolism: blue mussel (Mytilus edulis) from the U.S. east and west coasts, California mussel (Mytilus californianus) from the U.S. west coast, chorito mussel (Mytilus chiliensis) from Chile, green mussel (Perna canaliculus) from New Zealand, Atlantic surf clam (Spisula solidissima) from the U.S. east coast, butter clam (Saxidomus gigantea) from the west coast of the United States, almeja clam (Venus antiqua) from Chile, and Atlantic sea scallop (Plactopecten magellanicus) from the U.S. east coast. All samples were provided as whole animal homogenates, except Atlantic sea scallop and green mussel, from which only the hepatopancreas was homogenized. Among the naturally contaminated samples, five were blind duplicates used for calculation of RSDr. The interlaboratory RSDR of the assay for 21 samples tested in nine laboratories was 33.1%, yielding a HorRat value of 2.0. Removal of results for one laboratory that reported systematically low values resulted in an average RSDR of 28.7% and average HorRat value of 1.8. Intralaboratory RSDr, based on five blind duplicate samples tested in separate assays, was 25.1%. RSDr obtained by individual laboratories ranged from 11.8 to 34.9%. Laboratories that are routine users of the assay performed better than nonroutine users, with an average RSDr of 17.1%. Recovery of STX from spiked shellfish homogenates was 88.1–93.3%. Correlation with the mouse bioassay yielded a slope of 1.64 and correlation coefficient (r2) of 0.84, while correlation with the precolumn oxidation HPLC method yielded a slope of 1.20 and an r2 of 0.92. When samples were sorted according to increasing toxin concentration (μg STX diHCl equiv./kg) as assessed by the mouse bioassay, the RBA returned no false negatives relative to the 800 μg STX diHCl equiv./kg regulatory limit for shellfish. Currently, no validated methods other than the mouse bioassay directly measure a composite toxic potency for PST in shellfish. The results of this interlaboratory study demonstrate that the RBA is suitable for the routine determination of PST in shellfish in appropriately equipped laboratories.


Sign in / Sign up

Export Citation Format

Share Document