scholarly journals Natural Remanent Magnetization, Magnetic Properties, and Oxidation of Titanomagnetite in Basaltic Rocks from DSDP Leg 34

Author(s):  
S. Gromme ◽  
E. Mankinen
1970 ◽  
Vol 7 (2) ◽  
pp. 239-256 ◽  
Author(s):  
C. M. Carmichael

Measurements of the magnetic properties, paleomagnetic field intensity, and the inferred paleomagnetic field polarity have been made using fine grained basalt and coarser grained rock samples dredged from the mid-Atlantic ridge near 45° N and supplied by the Geological Survey of Canada. The opaque mineralogy of the samples was studied by microscope, Curie point, and X-ray diffraction techniques. The natural remanent magnetization of the basalt is of the order of 5 to 10 × 10−3 e.m.u./cm3 with some values from the center of the median valley reaching 10−1 e.m.u./cm3. Magnetic anomalies over the ridge can be accounted for by the remanent magnetization of a few hundred meters of this basalt. The coarse grained rocks were relatively weakly magnetized, and while they contribute little to the magnetic anomalies, their diverse character suggests that the major portion of the oceanic crust, below a thin veneer of fine grained basalt, has differentiated into a complex structure.


2021 ◽  
Vol 9 ◽  
Author(s):  
Plinio Jaqueto ◽  
Ricardo I. F. Trindade ◽  
Joshua M. Feinberg ◽  
Janine Carmo ◽  
Valdir F. Novello ◽  
...  

Fe-bearing minerals are a tiny fraction of the composition of speleothems. They have their origin in the karst system or are transported from the drainage basin into the cave. Recent studies on the magnetism of speleothems focused on the variations of their magnetic mineralogy in specific time intervals and are usually limited to a single sample. In this study, we describe a database of environmental magnetism parameters built from 22 stalagmites from different caves located in Brazil (South America) at different latitudes, comprising different climates and biomes. The magnetic signal observed in these stalagmites is dominated by low-coercivity minerals (∼20 mT) whose magnetic properties resemble those of the magnetite formed in pedogenic environments. Also, a comparison with few samples from soils and the carbonate from cave’s walls shows a good agreement of the magnetic properties of speleothems with those of soil samples, reinforcing previous suggestions that in (sub-)tropical regimes, the dominant magnetic phase in speleothems is associated with the soil above the cave. Spearman’s rank correlation points to a positive strong correlation between magnetic concentration parameters (mass-normalized magnetic susceptibility, natural remanent magnetization, anhysteretic remanent magnetization, and isothermal remanent magnetization). This implies that ultrafine ferrimagnetic minerals are the dominant phase in these (sub-)tropical karst systems, which extend across a diverse range of biomes. Although the samples are concentrated in the savannah biome (Cerrado) (∼70%), comparison with other biomes shows a higher concentration of magnetic minerals in speleothem underlying savannahs and lower concentration in those underlying moist broadleaf forests (Atlantic and Amazon biome) and dry forests (Caatinga). Thus, rainfall, biome, and epikarst dynamics play an important role in the concentration of magnetic minerals in speleothems in (sub-)tropical sites and indicate they can be an important target for paleoenvironmental research in cave systems.


1970 ◽  
Vol 7 (6) ◽  
pp. 1515-1527 ◽  
Author(s):  
J. Brooke ◽  
E. Irving ◽  
J. K. Park

Three bore-cores containing basalts have been obtained from the Mid-Atlantic Ridge at 45° N. The material is fresh and ideal for the study of physical properties. The drilling record and the nature of the core itself suggest that much of the basalt is from detached boulders, although one core may be in situ. In one core, variations in coercivity by a factor 2 occur within a distance of 5 cm. The coercive force spectra of anhysteretic and natural remanent magnetization are similar, but there are small differences due to secondary components which are used to predict correctly the polarity of 11 out of 12 specimens studied. This result may be of technical interest only since there is no guarantee that the material is in situ.


1983 ◽  
Vol 20 (2) ◽  
pp. 322-333 ◽  
Author(s):  
Brigitte Smith

Among the basaltic rocks sampled by submersible or dredged at the East-Pacific Rise axis around 21°N latitude (French–American–Mexican legs CYAMEX and RISE), 22 samples have been selected according to macroscopic, oriented criteria (elongation plane of feeder tubes in sheeted lavas, bubbles and gas cavities, stalactites, septa) from which the polarity of a sample, acquired in situ during its cooling, could be established.The natural remanent magnetization intensity of these generally voluminous samples (up to about 350 cm3) has a mean value of 11.35 ± 2.31 A∙m−1 (10−3 emu∙cm−3); the scatter of the values can be explained by the varying proportion of nonmagnetic material (glass, Mn) in the samples.The magnetic viscosity is always negligible and the stability of the remanent magnetization direction after alternating field demagnetization indicates that the stable direction determined is the direction of the original thermoremanence.Despite the relatively low latitude, which makes the occurrence of negative magnetic inclinations within a normal polarity period (Brunhes, in this case) more probable, no reverse polarity has been found. The mean inclination of the 22 samples is I = +41.8 ± 16.7° and becomes I = +42.2 ± 19.4° if the samples are grouped in 15 pin-point sampling sites; these values are not significantly different from those of the local dipole field, I = ±37.4°, or from those of the actual local field, I ~ +47°, which may be the result of effusions from the youngest lava flows.The scatter of the magnetic inclination values is more tightly bound to the quality of the polarity criteria than to the secular variation of the Earth ' s magnetic field, the latter interfering in only a few cases. It is obvious that the validity of the reorientation depends on (1) the morphological quality of the criteria used: those that are well developed, well represented in the sample, and apparently the most crystallized (glassy criterion has proved to be doubtful), permit a better reorientation of the sample; and (2) the principle of the criterion itself: criteria referring to vertical axes (stalactites) or vertical planes (septa) are more reliable than those based upon the determination of a horizontal plane (elongation plane of tubes in sheeted lavas).It appears from this study that macroscopic polarity criteria may be used in an almost systematic way to find the polarity of an in situ sample.


Sign in / Sign up

Export Citation Format

Share Document