scholarly journals Hecke von Neumann Algebra of Ergodic Discrete Measured Equivalence Relations

Author(s):  
Hisashi Aoi ◽  
Takehiko Yamanouchi
2017 ◽  
Vol 38 (7) ◽  
pp. 2618-2624 ◽  
Author(s):  
TOBE DEPREZ ◽  
STEFAAN VAES

We say that a countable group $G$ is McDuff if it admits a free ergodic probability measure preserving action such that the crossed product is a McDuff $\text{II}_{1}$ factor. Similarly, $G$ is said to be stable if it admits such an action with the orbit equivalence relation being stable. The McDuff property, stability, inner amenability and property Gamma are subtly related and several implications and non-implications were obtained in Effros [Property $\unicode[STIX]{x1D6E4}$ and inner amenability. Proc. Amer. Math. Soc.47 (1975), 483–486], Jones and Schmidt [Asymptotically invariant sequences and approximate finiteness. Amer. J. Math.109 (1987), 91–114], Vaes [An inner amenable group whose von Neumann algebra does not have property Gamma. Acta Math.208 (2012), 389–394], Kida [Inner amenable groups having no stable action. Geom. Dedicata173 (2014), 185–192] and Kida [Stability in orbit equivalence for Baumslag–Solitar groups and Vaes groups. Groups Geom. Dyn.9 (2015), 203–235]. We complete the picture with the remaining implications and counterexamples.


2020 ◽  
Vol 8 ◽  
Author(s):  
YOSHIKATA KIDA ◽  
ROBIN TUCKER-DROB

We introduce inner amenability for discrete probability-measure-preserving (p.m.p.) groupoids and investigate its basic properties, examples, and the connection with central sequences in the full group of the groupoid or central sequences in the von Neumann algebra associated with the groupoid. Among other things, we show that every free ergodic p.m.p. compact action of an inner amenable group gives rise to an inner amenable orbit equivalence relation. We also obtain an analogous result for compact extensions of equivalence relations that either are stable or have a nontrivial central sequence in their full group.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


2014 ◽  
Vol 20 (1) ◽  
pp. 94-97
Author(s):  
Natasha Dobrinen

Author(s):  
B. V. RAJARAMA BHAT ◽  
R. SRINIVASAN

B. Tsirelson constructed an uncountable family of type III product systems of Hilbert spaces through the theory of Gaussian spaces, measure type spaces and "slightly colored noises", using techniques from probability theory. Here we take a purely functional analytic approach and try to have a better understanding of Tsireleson's construction and his examples. We prove an extension of Shale's theorem connecting symplectic group and Weyl representation. We show that the "Shale map" respects compositions (this settles an old conjecture of K. R. Parthasarathy8). Using this we associate a product system to a sum system. This construction includes the exponential product system of Arveson, as a trivial case, and the type III examples of Tsirelson. By associating a von Neumann algebra to every "elementary set" in [0, 1], in a much simpler and direct way, we arrive at the invariants of the product system introduced by Tsirelson, given in terms of the sum system. Then we introduce a notion of divisibility for a sum system, and prove that the examples of Tsirelson are divisible. It is shown that only type I and type III product systems arise out of divisible sum systems. Finally, we give a sufficient condition for a divisible sum system to give rise to a unitless (type III) product system.


Sign in / Sign up

Export Citation Format

Share Document