scholarly journals Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation

Author(s):  
U. Baid ◽  
S. Talbar ◽  
S. Talbar
2020 ◽  
Vol 10 (14) ◽  
pp. 4892
Author(s):  
Anindya Apriliyanti Pravitasari ◽  
Nur Iriawan ◽  
Kartika Fithriasari ◽  
Santi Wulan Purnami ◽  
Irhamah ◽  
...  

The detection of a brain tumor through magnetic resonance imaging (MRI) is still challenging when the image is in low quality. Image segmentation could be done to provide a clear brain tumor area as the region of interest. In this study, we propose an improved model-based clustering approach for MRI-based image segmentation. The main contribution is the use of the adaptive neo-normal distributions in the form of a finite mixture model that could handle both symmetrical and asymmetrical patterns in an MRI image. The neo-normal mixture model (Nenomimo) also resolves the limitation of the Gaussian mixture model (GMM) and the generalized GMM (GGMM), which are limited by the short-tailed form of their distributions and their sensitivity against noise. Model estimation is done through an optimization process using the Bayesian method coupled with a Markov chain Monte Carlo (MCMC) approach, and it employs a silhouette coefficient to find the optimum number of clusters. The performance of the Nenomimo was evaluated against the GMM and the GGMM using the misclassification ratio (MCR). Finally, this study discovered that the Nenomimo provides better segmentation results for both simulated and real data sets, with an average MCR for MRI brain tumor image segmentation of less than 3%.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


2018 ◽  
pp. 2402-2419
Author(s):  
Jyotsna Rani ◽  
Ram Kumar ◽  
Fazal A. Talukdar ◽  
Nilanjan Dey

Image segmentation is a technique which divides an image into its constituent regions or objects. Segmentation continues till we reach our area of interest or the specified object of target. This field offers vast future scope and challenges for the researchers. This proposal uses the fuzzy c mean technique to segment the different MRI brain tumor images. This proposal also shows the comparative results of Thresholding, K-means clustering and Fuzzy c- means clustering. Dice coefficient and Jaccards measure is used for accuracy of the segmentation in this proposal. Experimental results demonstrate the performance of the designed method.


2019 ◽  
Author(s):  
Anindya Apriliyanti Pravitasari ◽  
Nur Indah Nirmalasari ◽  
Nur Iriawan ◽  
Irhamah ◽  
Kartika Fithriasari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document