scholarly journals Analysis of Fouling in Sewage Source Heat Pump Heat Exchanger

Author(s):  
Xu Zhang ◽  
Lingzhe Zhang
2014 ◽  
Vol 1070-1072 ◽  
pp. 1799-1802
Author(s):  
Hai Yang Bi ◽  
Yong Mao Shang ◽  
Xiang Hong Gu

Changing "high consumption energy, low temperature heat to the indoor, waste heat to the environment", and turning the HVAC harmoniously into the natural ecological cycle, conform to the trend of the development of ecological architecture. Heat pump technology is a way of HVAC energy saving the most practical. Although low heat and cold source of the city sewage is ideal, but the quality is very unstable, can not meet the operation requirements of heat exchange equipment. This paper analyzes the key problems of the sewage side in sewage source heat pump technology application in the present: hair dirt clog sewage heat exchanger; fouling in heat surface reduces the heat transfer performance, and results in large heat-transfer equipment in the practical application. According to the key problems of sewage side, this paper prevents hair clogged with large tube heat exchanger; reduces the fouling thermal resistance, and enhances heat transfer process using the heat exchanging technology of circulating fluidized bed.


2014 ◽  
Vol 525 ◽  
pp. 603-606
Author(s):  
Jian Feng Qian ◽  
Ya Yuan Liu ◽  
Ying Xu ◽  
Yan Kun Tan

sewage heat exchanger is important to collect heat energy in sewage source heat pump system. Heat transfer enhancement effect is not obvious while the chemical methods and manual cleaning is applying to remove the heat exchangers fouling in the long-term operation. Here sets an ultrasonic incrustation removal physical model in heat exchanger structure to antiscaling and descaling simultaneously. The acoustic cavitation technology can be used in sewage source heat pump systems for the experimental results and decontamination rate reaches 50%.


Author(s):  
X. L. Zhao ◽  
L. Fu ◽  
S. G. Zhang ◽  
J. Z. Zhu ◽  
B. M. Huang ◽  
...  

A critical issue for BCHP (Building combined cooling heating and power) system is the efficient integration of power generation equipment with different heat utilization technologies. A BCHP system with an urban original sewage source absorption heat pump is proposed. The system is composed of an internal combustion engine, a water-water heat exchanger, a flue gas driven absorption heat pump, a filth block device, a wastewater heat exchanger, and other assistant facilities, such as pumps, fans, and end user devices. In the winter, the waste heat of the flue gas is used to drive absorption heat pump to recover the waste heat of sewage source and the flue gas, and in the summer, the waste heat of the flue gas is used to drive absorption heat pump for cooling, and the heat load of the building is removed to the sewage. In the paper, this kind of system was designed according to the energy consumption of the buildings, and the overall performance of the system in the heating and cooling mode was studied, and the energy efficiency level was analyzed. It is shown that the system is the efficient integration of clean energy and waste heat resource, and the energy efficiency of the system could be improved by 18.5% compared with the conventional BCHP systems.


2012 ◽  
Vol 424-425 ◽  
pp. 751-755
Author(s):  
Cheng Hu Zhang ◽  
Na Meng ◽  
De Xing Sun

The sewage should be filtered to prevent the blockage of the heat exchanger before using. And the anti-blocking machine is the key device to prevent blocking in sewage source heat pump system. The paper introduces the development of the anti-blocking machine: intermittent backwashing, flat continuous backing, cylindrical with external baffle continuous backwashing, double-stage continuous backwashing without external baffle. Also, it describes the principle of the anti-blocking machine, the key technologies and the necessity of choosing double-stage pump in sewage source heat pump system with anti-blocking machine. The paper concludes the technical characteristics, the advantages and disadvantages of the double-stage sewage source heat pump system and introduces the selecting principle of the double-stage pump. The paper clarifies some misunderstanding about anti-blocking machine and double-stage pump.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


Sign in / Sign up

Export Citation Format

Share Document