scholarly journals Improved Nonnegative Matrix Factorization Based Feature Selection for High Dimensional Data Analysis

Author(s):  
Lincheng Jiang ◽  
Wentang Tan ◽  
Zhenwen Wang ◽  
Fengjing Yin ◽  
Bin Ge ◽  
...  
2013 ◽  
Vol 347-350 ◽  
pp. 2344-2348
Author(s):  
Lin Cheng Jiang ◽  
Wen Tang Tan ◽  
Zhen Wen Wang ◽  
Feng Jing Yin ◽  
Bin Ge ◽  
...  

Feature selection has become the focus of research areas of applications with high dimensional data. Nonnegative matrix factorization (NMF) is a good method for dimensionality reduction but it cant select the optimal feature subset for its a feature extraction method. In this paper, a two-step strategy method based on improved NMF is proposed.The first step is to get the basis of each catagory in the dataset by NMF. Added constrains can guarantee these basises are sparse and mostly distinguish from each other which can contribute to classfication. An auxiliary function is used to prove the algorithm convergent.The classic ReliefF algorithm is used to weight each feature by all the basis vectors and choose the optimal feature subset in the second step.The experimental results revealed that the proposed method can select a representive and relevant feature subset which is effective in improving the performance of the classifier.


2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Yuanyuan Ma ◽  
Junmin Zhao ◽  
Yingjun Ma

Abstract Background With the rapid development of high-throughput technique, multiple heterogeneous omics data have been accumulated vastly (e.g., genomics, proteomics and metabolomics data). Integrating information from multiple sources or views is challenging to obtain a profound insight into the complicated relations among micro-organisms, nutrients and host environment. In this paper we propose a multi-view Hessian regularization based symmetric nonnegative matrix factorization algorithm (MHSNMF) for clustering heterogeneous microbiome data. Compared with many existing approaches, the advantages of MHSNMF lie in: (1) MHSNMF combines multiple Hessian regularization to leverage the high-order information from the same cohort of instances with multiple representations; (2) MHSNMF utilities the advantages of SNMF and naturally handles the complex relationship among microbiome samples; (3) uses the consensus matrix obtained by MHSNMF, we also design a novel approach to predict the classification of new microbiome samples. Results We conduct extensive experiments on two real-word datasets (Three-source dataset and Human Microbiome Plan dataset), the experimental results show that the proposed MHSNMF algorithm outperforms other baseline and state-of-the-art methods. Compared with other methods, MHSNMF achieves the best performance (accuracy: 95.28%, normalized mutual information: 91.79%) on microbiome data. It suggests the potential application of MHSNMF in microbiome data analysis. Conclusions Results show that the proposed MHSNMF algorithm can effectively combine the phylogenetic, transporter, and metabolic profiles into a unified paradigm to analyze the relationships among different microbiome samples. Furthermore, the proposed prediction method based on MHSNMF has been shown to be effective in judging the types of new microbiome samples.


Sign in / Sign up

Export Citation Format

Share Document