scholarly journals Research Progress in Tidal Current Energy Power Generation Device

Author(s):  
Yongding Wang ◽  
Haoyang Lu
Author(s):  
Mohammed S. Mayeed ◽  
Golam M. Newaz ◽  
Dallin Hall ◽  
Davison Elder

Tidal current energy is regarded as one of the most promising alternative energy resources for its minimal environmental footprint and high-energy density. The device used to harness tidal current energy is the tidal current turbine, which shares similar working principle with wind turbines. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation. There is a paucity of information regarding various key aspects of system design encountered in this relatively new area of research. Not much work has been done to determine the characteristics of turbines running in water for kinetic energy conversion even though relevant work has been carried out on ship’s propellers, wind turbines and on hydro turbines. None of these three well established areas of technology completely overlap with this new field so that gaps remain in the state of knowledge. A tidal current turbine rated at 1–3 m/s in water can result in four times as much energy per year/m2 of rotor swept area as similarly rated power wind turbine. Areas with high marine current flows commonly occur in narrow straits, between islands, and around. There are many sites worldwide with current velocities around 2.5 m/s, such as near the UK, Italy, the Philippines, and Japan. In the United States, the Florida Current and the Gulf Stream are reasonably swift and continuous currents moving close to shore in areas where there is a demand for power. In this study tidal current turbines are designed for several high tidal current areas around USA for a tidal current speed range from 1 m/s to 2.5 m/s. Several locations around USA are considered, e.g. the Gulf Stream; Mississippi River, St. Clair’s river connecting Lake Huron to Lake St. Clair’s; Colorado River within Cataract Canyon etc. Tidal current turbines can be classified as either horizontal or vertical axis turbines. In this study several designs from both the classifications are considered and modeled using SolidWorks. Hydrodynamic analysis is performed using SolidWorks Flow simulation software, and then optimization of the designs is performed based on maximizing the starting rotational torque and ultimate power generation capacity. From flow simulations, forces on the tidal current turbine blades and structures are calculated, and used in subsequent stress analysis using SolidWorks Simulation software to confirm structural integrity. The comparative results from this study will help in the systematic optimization of the tidal current turbine designs at various locations.


Author(s):  
Anand Prakash Yadav ◽  
Kundan Kumar ◽  
Priyank Srivastava

Now days and in the coming years, increased attention is being given to the tidal current energy development all over the world. This article is about tidal power generation. It describes tidal power and the various methods of utilizing tidal power to generate electricity. The paper focuses on the potential of this method of generating the electricity and why this could be a common way of producing electricity in the near future. It also focuses on the scope of tidal power in coastal areas of India and their comparisons.


2021 ◽  
Vol 9 (11) ◽  
pp. 1286
Author(s):  
Hao Chen ◽  
Qi Li ◽  
Mohamed Benbouzid ◽  
Jingang Han ◽  
Nadia Aït-Ahmed

Considering the depletion of oil, coal, gas and other fossil energy, and the increasingly serious environmental pollution, all countries in the world are developing clean and renewable energy, such as wind energy, water energy, solar energy, etc., to alleviate the current energy crisis. Tidal current energy belongs to the marine renewable energy. It is clean, pollution-free, and abundant, with a good prospect of development due to its similarity with wind energy. This paper firstly analyses the reserves and distribution of tidal current energy in China. Then the early exploration of Tidal Current Power Generation System (TCPGS) in China is briefly introduced. Subsequently, it gives the details of the devices and experimental platforms of TCPGS that were researched and developed by various universities, research institutes and enterprises in China. The information mainly includes: the size and the capacity of the system, the support structure, turbine type, the selection of generator, and some river and offshore test information, etc. Finally, it discusses the similarities and differences between China and other countries in tidal current power generation technology, and summaries the current development status and gives the prospect of the TCPGS technology in China.


2020 ◽  
Vol 1716 ◽  
pp. 012008
Author(s):  
P Vyshnavi ◽  
Nithya Venkatesan ◽  
A. Samad ◽  
E.J. Avital

2021 ◽  
Vol 9 (6) ◽  
pp. 574
Author(s):  
Zhuo Liu ◽  
Tianhao Tang ◽  
Azeddine Houari ◽  
Mohamed Machmoum ◽  
Mohamed Fouad Benkhoris

This paper firstly adopts a fault accommodation structure, a five-phase permanent magnet synchronous generator (PMSG) with trapezoidal back-electromagnetic forces, in order to enhance the fault tolerance of tidal current energy conversion systems. Meanwhile, a fault-tolerant control (FTC) method is proposed using multiple second-order generalized integrators (multiple SOGIs) to further improve the systematic fault tolerance. Then, additional harmonic disturbances from phase current or back-electromagnetic forces in original and Park’s frames are characterized under a single-phase open condition. Relying on a classical field-oriented vector control scheme, fault-tolerant composite controllers are then reconfigured using multiple SOGIs by compensating q-axis control commands. Finally, a real power-scale simulation setup with a gearless back-to-back tidal current energy conversion chain and a small power-scale laboratory prototype in machine side are established to comprehensively validate feasibility and fault tolerance of the proposed method. Simulation results show that the proposed method is able to suppress the main harmonic disturbances and maintain a satisfactory fault tolerance when third harmonic flux varies. Experimental results reveal that the proposed model-free fault-tolerant design is simple to implement, which contributes to better fault-tolerant behaviors, higher power quality and lower copper losses. The main advantage of the multiple SOGIs lies in convenient online implementation and efficient multi-harmonic extractions, without considering system’s model parameters. The proposed FTC design provides a model-free fault-tolerant solution to the energy harvested process of actual tidal current energy conversion systems under different working conditions.


Sign in / Sign up

Export Citation Format

Share Document