Lp − Lq Decay Estimates for Wave Equations with Time-Dependent Coefficients

2004 ◽  
Vol 11 (4) ◽  
pp. 534-548 ◽  
Author(s):  
Michael Reissig
2015 ◽  
Vol 12 (02) ◽  
pp. 249-276
Author(s):  
Tomonari Watanabe

We study the global existence and the derivation of decay estimates for nonlinear wave equations with a space-time dependent dissipative term posed in an exterior domain. The linear dissipative effect may vanish in a compact space region and, moreover, the nonlinear terms need not be in a divergence form. In order to establish higher-order energy estimates, we introduce an argument based on a suitable rescaling. The proposed method is useful to control certain derivatives of the dissipation coefficient.


Author(s):  
Shi-Zhuo Looi ◽  
Mihai Tohaneanu

Abstract We prove that solutions to the quintic semilinear wave equation with variable coefficients in ${{\mathbb {R}}}^{1+3}$ scatter to a solution to the corresponding linear wave equation. The coefficients are small and decay as $|x|\to \infty$ , but are allowed to be time dependent. The proof uses local energy decay estimates to establish the decay of the $L^{6}$ norm of the solution as $t\to \infty$ .


Author(s):  
Wenhui Chen ◽  
Marcello D’Abbicco ◽  
Giovanni Girardi

AbstractIn this work, we prove the existence of global (in time) small data solutions for wave equations with two dissipative terms and with power nonlinearity $$|u|^p$$ | u | p or nonlinearity of derivative type $$|u_t|^p$$ | u t | p , in any space dimension $$n\geqslant 1$$ n ⩾ 1 , for supercritical powers $$p>{\bar{p}}$$ p > p ¯ . The presence of two dissipative terms strongly influences the nature of the problem, allowing us to derive $$L^r-L^q$$ L r - L q long time decay estimates for the solution in the full range $$1\leqslant r\leqslant q\leqslant \infty $$ 1 ⩽ r ⩽ q ⩽ ∞ . The optimality of the critical exponents is guaranteed by a nonexistence result for subcritical powers $$p<{\bar{p}}$$ p < p ¯ .


2020 ◽  
Vol 40 (6) ◽  
pp. 725-736
Author(s):  
Mitsuhiro Nakao

We consider the initial-boundary value problem for semilinear dissipative wave equations in noncylindrical domain \(\bigcup_{0\leq t \lt\infty} \Omega(t)\times\{t\} \subset \mathbb{R}^N\times \mathbb{R}\). We are interested in finite energy solution. We derive an exponential decay of the energy in the case \(\Omega(t)\) is bounded in \(\mathbb{R}^N\) and the estimate \[\int\limits_0^{\infty} E(t)dt \leq C(E(0),\|u(0)\|)< \infty\] in the case \(\Omega(t)\) is unbounded. Existence and uniqueness of finite energy solution are also proved.


Sign in / Sign up

Export Citation Format

Share Document