scholarly journals A Novel Scheme in Lossless Compression of Medical Image

Author(s):  
Hongying Han ◽  
Yanguang Liu ◽  
Qiuling Wang ◽  
Yan Li ◽  
Tengfei Li ◽  
...  
2020 ◽  
Vol 14 ◽  

Lossless compression is crucial in the remote transmission of large-scale medical image and the retainment of complete medical diagnostic information. The lossless compression method of medical image based on differential probability of image is proposed in this study. The medical image with DICOM format was decorrelated by the differential method, and the difference matrix was optimally coded by the Huffman coding method to obtain the optimal compression effect. Experimental results obtained using the new method were compared with those using Lempel–Ziv–Welch, modified run–length encoding, and block–bit allocation methods to verify its effectiveness. For 2-D medical images, the lossless compression effect of the proposed method is the best when the object region is more than 20% of the image. For 3-D medical images, the proposed method has the highest compression ratio among the control methods. The proposed method can be directly used for lossless compression of DICOM images.


Author(s):  
Lakshminarayana M ◽  
Mrinal Sarvagya

Compressive sensing is one of teh cost effective solution towards performing compression of heavier form of signals. We reviewed the existing research contribution towards compressive sensing to find that existing system doesnt offer any form of optimization for which reason the signal are superiorly compressed but at the cost of enough resources. Therefore, we introduce a framework that optimizes the performance of the compressive sensing by introducing 4 sequential algorithms for performing Random Sampling, Lossless Compression for region-of-interest, Compressive Sensing using transform-based scheme, and optimization. The contribution of proposed paper is a good balance between computational efficiency and quality of reconstructed medical image when transmitted over network with low channel capacity. The study outcome shows that proposed system offers maximum signal quality and lower algorithm processing time in contrast to existing compression techniuqes on medical images.


A massive volume of medical data is generating through advanced medical image modalities. With advancements in telecommunications, Telemedicine, and Teleradiologyy have become the most common and viable methods for effective health care delivery around the globe. For sufficient storage, medical images should be compressed using lossless compression techniques. In this paper, we aim at developing a lossless compression technique to achieve a better compression ratio with reversible data hiding. The proposed work segments foreground and background area in medical images using semantic segmentation with the Hierarchical Neural Architecture Search (HNAS) Network model. After segmenting the medical image, confidential patient data is hidden in the foreground area using the parity check method. Following data hiding, lossless compression of foreground and background is done using Huffman and Lempel-Ziv-Welch methods. The performance of our proposed method has been compared with those obtained from standard lossless compression algorithms and existing reversible data hiding methods. This proposed method achieves better compression ratio and a hundred percent reversible when data extraction.


2021 ◽  
Vol 64 ◽  
pp. 102306
Author(s):  
Zhongqiang Li ◽  
Alexandra Ramos ◽  
Zheng Li ◽  
Michelle L. Osborn ◽  
Xin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document