scholarly journals Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores

10.30544/513 ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 199-208
Author(s):  
Srdjan Stanković ◽  
Srećko Stopić ◽  
Miroslav Sokić ◽  
Branislav Marković ◽  
Bernd Friedrich

Laterite ores are becoming the most important global source of nickel and cobalt. Pyrometallurgical processing of the laterites is still a dominant technology, but the share of nickel and cobalt produced by the application of various hydrometallurgical technologies is increasing. Hydrometallurgy is a less energy-demanding process, resulting in lower operational costs and environmental impacts. This review covers past technologies for hydrometallurgical processing of nickel and cobalt (Caron), current technologies (high-pressure acid leaching, atmospheric leaching, heap leaching), developing technologies (Direct nickel, Neomet) as well as prospective biotechnologies (Ferredox process).

2017 ◽  
Vol 133 (4) ◽  
pp. 68-75
Author(s):  
Shinichi HEGURI ◽  
Hirofumi SHOJI ◽  
Isao NISHIKAWA ◽  
Hiroshi KOBAYASHI ◽  
Atsushi IDEGAMI

2005 ◽  
Vol 38 (6) ◽  
pp. 927-933 ◽  
Author(s):  
Ian C. Madsen ◽  
Nicola V. Y. Scarlett ◽  
Barry I. Whittington

This paper outlines the use of an innovative system for thein situinvestigation of hydrothermal reactions by X-ray diffraction. The key features are the use of: (i) a purpose-built capillary reaction vessel which allows close emulation of the conditions present in mineral processing plants; (ii) MoKα radiation, to ensure that the X-ray beam penetrates through the capillary, and (iii) an Inel CPS120 position-sensitive detector, to enable simultaneous collection of a wide range (120° 2θ) of diffraction data. The pressure acid leaching (PAL) of nickel laterite ores is used to illustrate the capabilities of this system, with a particular focus on the PAL of saprolite in strong H2SO4at 493 K. Saprolitic ore, which largely consists of serpentine mineral phases [(Mg,Fe,Ni,Al)3(Si,Al)2O5(OH)4], undergoes a number of mineralogical changes during both the acid leaching reaction and subsequent cooling, thus making it difficult to examine accurately using traditional post-reactionex situtechniques. In particular, kieserite (MgSO4.H2O), which forms during leaching, has a negative temperature coefficient of solubility, causing it to dissolve on cooling. Thein situtechnique described in this paper allows the direct observation of kieserite formation during the saprolite PAL at 493 K and its dissolution upon cooling to ambient temperature.


2016 ◽  
Vol 57 (10) ◽  
pp. 1753-1758
Author(s):  
Gunha Kim ◽  
Ga-hee Kang ◽  
Sangjun Kim ◽  
Sookyung Kim ◽  
Jeongsoo Sohn ◽  
...  

Author(s):  
Dmitry Zinoveev ◽  
Pavel Grudinsky ◽  
Ekaterina Zhiltsova ◽  
Darya Grigoreva ◽  
Anton Volkov ◽  
...  

Red mud is a hazardous waste of alumina industry that contains high amounts of iron, aluminum, titanium and REEs. One of the promising methods for the extraction of iron from red mud is car-bothermic reduction with the addition of sodium salts. This research focuses on the process of hy-drochloric high-pressure acid leaching using 10–20% HCl of two samples of non-magnetic tailings obtained by 60-minute carbothermic roasting of red mud at 1300 °C and the mixture of 84.6 wt. % of red mud and 15.4 wt. % Na2SO4 at 1150 °C, respectively, with subsequent magnetic separation of metallic iron. An influence of temperature, leaching duration, solid-to-liquid-ratio and acid con-centration on dissolution behavior of Al, Ti, Mg, Ca, Si, Fe, Na, La, Ce, Pr, Nd, Sc, Zr were studied. Based on the investigation of the obtained residues, mechanism of passing of valuable elements into the solution was proposed. It has shown that 90% Al, 91% Sc and above 80% of other REEs can be dissolved under optimal conditions; Ti can be extracted into the solution or the residue depending on the leaching temperature and acid concentration. Based on the research results, novel flowsheets for red mud treatment were developed.


Sign in / Sign up

Export Citation Format

Share Document