Metallurgical and Materials Engineering
Latest Publications


TOTAL DOCUMENTS

238
(FIVE YEARS 98)

H-INDEX

5
(FIVE YEARS 1)

Published By Association Of Metallurgical Engineers Of Serbia

2217-8961

10.30544/745 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 531-539
Author(s):  
P. Bharath Sreevatsava ◽  
E. Vara Prasad ◽  
A. Sai Deepak Kumar ◽  
Mohammad Fayaz Anwar ◽  
Vadapally Rama Rao ◽  
...  

Austenitic Stainless steels are majorly used because of their high resistance to aqueous corrosion and high temperature properties. Some major applications of stainless steels at high temperatures include engine and exhaust components in aircrafts, recuperators in steel mills, and pulverized coal injection lances for blast furnaces. In all the above said applications, the components are constantly subjected to loads and high temperatures. This makes the study of their creep behavior very important to decide the life of the component. Cr-Ni stainless steel was used as a starting material, and hot impression creep test was performed on cylindrical samples of 10 mm height and 15 mm diameter for a dwell time of 150 min at two different loads of 84 and 98 MPa and at two different temperatures 450 and 500 °C. The time vs. indentation depth was plotted, and creep rate was calculated in each case. It was observed that with an increase in time, creep rate increased in the primary creep region and remained almost constant in the secondary creep region irrespective of temperature and load. The indentation depth and creep rate increased with an increase in load and temperature.


10.30544/716 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 449-456
Author(s):  
Tomislav D Bradarić ◽  
Z. M. Slović ◽  
G. J. Stepanoski ◽  
S. Kosanović

This paper describes the computer model for BOF control that was in use at Smederevo, Serbia, during the period 1994-2006. The model was developed at the Institute of Metallurgy of the Smederevo Steelwork in mid-1994 and was motivated by the fact that the plant in Smederevo, by that time, had many years of experience in endpoint control using Intermediate Stop Practice (ISP). The vision for the model was to continuously improve and adapt to the working conditions of production through self-learning and adjustments. The model belongs to the well-known family of Static-Dynamic models (SDMs). It is aimed to reduce the "oxygen off-to-start tap" time and thus increase productivity and reduce production costs. The paper briefly describes the metallurgical software, operator operations and provides some information on the model's effectiveness.


10.30544/776 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 437-447
Author(s):  
Marija Mihailović ◽  
Karlo Raić

When the quantitative characterization of non-metallic inclusions in steel is done and the effect of limiting factors is assessed, and based on that the possibility of reconstruction of the total content of non-metallic inclusions in steel is estimated, further considerations can be directed towards predicting the model of size distribution curve. The aim of this work is to establish relations on the basis of which it will be possible to quantify the content of non-metallic inclusions in extra-pure steels, when metallographic control is difficult or even impossible by routine procedures.


10.30544/646 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 425-436
Author(s):  
Z. M. Slović ◽  
D. Bradarić ◽  
Karlo Raić ◽  
J. Z. Slović

In integrated steel plants, the removal of phosphorous normally takes place during the primary basic oxygen furnace (BOF) steelmaking process. Phosphorous is usually introduced to the integrated steelmaking process through blast furnace additions, such as iron ore, coke, sinter, and fluxes. Among the others parameters such as optimizing the charging system, oxygen supply system, oxygen lance parameters of the converter, the flux quality in combination with temperature process control can improve the BOF efficiency of Dephosphorization. Phosphorus partition ratio (LP) is usually used to evaluate the thermodynamic efficiency of the dephosphorization of slags with different compositions in steelmaking processes. However, this parameter is only useful in equilibrium conditions, and it is not accurate when used to evaluate slag efficiency in industrial processes. Because of this, the aim of this work was to study the phosphorus partition ratio estimated from the experimental results in real plant conditions of two different BOF steel plants and compare them with well-known published models. In the present study, data from two steel plants (further Plant A and Plant B) were evaluated applying Healy’s, Suito and Inoui’s, Zhang’s as well as Assis’s equations. The calculated values were compared against measured values.


10.30544/682 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 505-517
Author(s):  
Ashok Kumar Srivastava ◽  
Pradip K Patra

With an increasing demand for safer and greener vehicles, mild steel and high strength steel are being replaced by much stronger advanced high strength steels of thinner gauges. However, the welding process of advanced high strength steels is not developed at the same pace. The performance of these welded automotive structural components depends largely on the external and internal quality of weldment. Gas metal arc welding (GMAW) is one of the most common methods used in the automotive industry to join car body parts of dissimilar high strength steels. It is also recognized for its versatility and speed. In this work, after a review of GMAW process and issues in welding of advanced high strength steels, a welding experiment is carried out with varying heat input by using spray and pulse-spray transfer GMAW method with filler wires of three different strength levels. The experiment results, including macro-microstructure, mechanical properties, and microhardness of weld samples, are investigated in detail. Very good weldability of S650MC is demonstrated through the weld joint efficiency > 90%; no crack in bending of weld joints, or fracture of tensile test sample within weld joint or heat affected zone (HAZ), or softening of the HAZ. Pulse spray is superior because of thinner HAZ width and finer microstructure on account of lower heat input. The impact of filler wire strength on weldability is insignificant. However, high strength filler wire (ER100SG) may be chosen as per standard welding practice of matching strength.


10.30544/673 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 457-471
Author(s):  
Mile B Djurdjevic

This paper is devoted to the memory of Professor Ljubomir Nedeljkovic (1933-2020), Head of the Department of Iron and Steel Metallurgy University of Belgrade, Serbia. Assessment of the melt quality is one of the most important casting process parameters, which allowed sound production of intricated cast parts. At the present time, various devices have been applied at foundry floors to control melt quality. Thermal analysis is one of them, widely used for melt quality control in ferrous and non-ferrous casting plants. During solidification, metal and alloys released latent heat, which magnitude is dependent on the type of phases that form during the solidification process. Plotting temperature versus time data during solidification provides useful information related to the actual solidification process. The applied technique is called thermal analysis, whereas the cooling curve is the name of such a plot. The main aim of this paper is to give a short overview of the present thermal analysis application in various foundries and to indicate the future potential use of this technique.


10.30544/631 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 473-487
Author(s):  
Zoran Dušan Odanović

Steels are subjected to many time-dependent degradation mechanisms when they are applied in electric power plants. They are exposed to high temperatures, multi-axial stresses, creep, fatigue, corrosion, and abrasion during such services. Used under these threatening conditions, those materials could develop various damages or failures or even form cracks. Therefore, it is desirable to prevent in-service failures, improve reliability, and extend the plant's operational life. The efficiency of the electric power plant, among other processes, depends on effective maintenance. The paper presents the evaluation of advanced procedures and knowledge in the field of steel repair welding in the maintenance of the power plants. Most repair welding of low alloy steels requires high-temperature post-weld heat treatment (PWHT), but in certain repairs, however, this is not always possible. Application of the nickel-based filler metal could also be an alternative to performing post-weld heat treatment (PWHT). The repair work expenses could be reduced if the repair is performed on-site. The novel developed repair welding procedures presented in this paper were applied for emergency weld repairing of the steel pipelines in thermal power plant, repairing without disassembling the working wheel of the coal mill in thermal power plant and "on-site" repairing turbine shaft of the hydropower plant. For all the presented repair welding procedures, weldability analysis based on the analytical equations and technological ''CTS'' and ''Y'' tests to determine the sensitivity to cold and hot crack forming were applied. Tensile tests, absorbed energies tests, banding tests, and hardness measurements were performed on trial joints, which were used to develop and verify the applied methodologies. Presented advanced weld repair technologies enable repairs for a shorter time and at lower costs compared to conventional procedures.


10.30544/757 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 411-423
Author(s):  
Tatjana Mirkovic ◽  
Hauke Bartusch ◽  
Pavel Ivashechkin ◽  
Thorsten Hauck

At blast furnace B at Salzgitter Flachstahl a series of innovative measuring techniques are installed to monitor the processes at the blast furnace top, making this furnace one of the best equipped furnaces in Europe. These techniques comprise full 2D measurement of the temperature profile of the top gas shortly above the burden surface, 3D radar scan of the whole burden surface and online measurement of the dust concentration in the top gas. After more than 5 years’ experience with most of these techniques, they enable to better understand the complex chemical and physical interrelations occurring in the BF stack between the ascending process gas and the descending solid burden. A couple of examples of incidents that were monitored are presented in this article, including influences of charging programmes on top gas temperature profiles and influences of disturbed gas solids interaction on the BF working state. The new measuring techniques with tailor-made data processing enable the operators to gain a better picture of the processes currently occurring in the blast furnace, consequently supporting them in keeping the blast furnace operation as stable and efficient as possible.


Author(s):  
Mahadeva Reddy ◽  
Adaveesh B ◽  
Mohankumar T S ◽  
Madeva Nagaral

New composites materials are developed to meet the demand for medical devices, vehicles, protective equipment, sporting goods, etc. In present investigations, the effects of graphite filler particles in the epoxy were studied separately by preparing epoxy with 5 and 10 vol.% of graphite filler particles composites by hand layup technique. Further, the combined effect of graphite filler particles and pineapple leaf fibers (PALF) on the mechanical behaviour of epoxy composites was studied by preparing epoxy with 5 vol.% of graphite -30 vol.% of PALF and epoxy with 10 vol.% of graphite -30 vol.% of PALF composites. Prepared composites were subjected to evaluating various mechanical properties like tensile strength, elongation, and flexural strength as per ASTM standards. By adding graphite filler particles and PALF fibers tensile, and flexural strength were improved with a slight reduction in the percentage elongation. Further, these conventional results were validated by FEM analysis using MSC Patran and Nastran Student Version.


Author(s):  
M Hemici ◽  
T Chihi ◽  
M A Ghebouli ◽  
FATMI Messaoud ◽  
B Ghebouli ◽  
...  

Using density functional theory (DFT), the structural, elastic, electronic, and thermodynamic properties of Fe2Hf in the cubic and hexagonal solid phases with Fd-3m and P63/mmc are reported with generalized gradient approximations (GGA). To achieve energy convergence, we report the k-point mesh density and plane-wave energy cut-offs. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible Fe2Hf are determined in the wide pressure range. Finally, by using the quasi-harmonic Debye Model, the isothermal and adiabatic bulk modulus and heat capacity of Fe2Hf are also successfully obtained in the present work. By the elastic stability criteria, it is predicted that Fd-3m and P63/mmc structures of Fe2Hf are stable in the pressure range studied, respectively.


Sign in / Sign up

Export Citation Format

Share Document