scholarly journals Cost-Effectiveness of Energy Efficiency and Renewable Energy Technologies for Reducing Peak Demand

2021 ◽  
Author(s):  
Moncef Krarti ◽  
Mohammad Aldubyan

This paper describes an optimization-based approach to evaluate measures providing peak electricity demand reduction cost benefits for Saudi residential buildings. These measures can be categorized as energy efficiency (EE) and renewable energy (RE) measures. Specifically, this paper models the existing Saudi building stock using 56 housing prototypes based on types, vintages and locations.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4440
Author(s):  
Bader Alshuraiaan

The purpose of this study is to identify the most relevant renewable energy technologies for buildings and to assess the effectiveness of their implementation in the long term for Kuwait. Methods of analogies and comparisons were used to determine the features of energy efficiency based on the technologies under study. The study proposes the methodological approach to assessing the effectiveness of the introduction of renewable energy technologies, determining the direction of increasing the energy efficiency of buildings and the investment efficiency of introducing these technologies. Renewable energy efficiency analysis for buildings in Kuwait confirms that solar energy systems have been the most widely available for widespread use of solar energy over the past three years. An increasing level of energy efficiency with a decrease in the notional cost of increasing energy savings is characteristic of solar collectors with booster reflectors. The proposed model for assessing the level of energy saving provides an opportunity for economic justification of introducing renewable energy technology in buildings.


2015 ◽  
Vol 5 (2) ◽  
pp. 7-12
Author(s):  
I. L. Cîrstolovean

Abstract The goals of this paper are: to estimate the carbon emission reduction on energy efficiency measurements in a laboratory building in Transilvania University from Braşov, Romania, in accordance with the European Directive 2009/28/EC and to estimate the contribution of renewable energy to energy efficiency of the building using the performance indicator named Renewable Energy Ratio - RER. We will detail the methods of calculation for CO2 emissions and we will present the results for gas condensing boiler, and ground source heat pump for the laboratory building. The results show that conventional energy efficiency technologies and renewable energy technologies can be used to decrease CO2 emissions in buildings by 20–30% on average and up to over 40% for some building types and locations. The contribution of renewable energy is between 40 and 50 % from total energy use and only for heating is 58%. This value could rise to 0.63 if we apply to electricity produced by photovoltaic panels.


2016 ◽  
Vol 31 (2) ◽  
Author(s):  
Puleng Matatiele ◽  
Mary Gulumian

AbstractRenewable energy technologies (wind turbines, solar cells, biofuels, etc.) are often referred to as ‘clean’ or ‘green’ energy sources, while jobs linked to the field of environmental protection and energy efficiency are referred to as ‘green’ jobs. The energy efficiency of clean technologies, which is likely to reduce and/or eliminate reliance on fossil fuels, is acknowledged. However, the potential contribution of green technologies and associated practices to ill health and environmental pollution resulting from consumption of energy and raw materials, generation of waste, and the negative impacts related to some life cycle phases of these technologies are discussed. Similarly, a point is made that the green jobs theme is mistakenly oversold because the employment opportunities generated by transitioning to green technologies are not necessarily safe and healthy jobs. Emphasis is put on identifying the hazards associated with these green designs, assessing the risks to the environment and worker health and safety, and either eliminating the hazards or minimizing the risks as essential elements to the design, construction, operation, and maintenance of green technologies. The perception that it is not always economically possible to consider all risk factors associated with renewable energy technologies at the beginning without hampering their implementation, especially in the poor developing countries, is dismissed. Instead, poor countries are encouraged to start implementing environmentally sound practices while transitioning to green technologies in line with their technological development and overall economic growth.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Baqer Ameer ◽  
Moncef Krarti

In this paper, a general methodology for designing carbon-neutral residential communities is presented. Both energy efficiency measures and renewable energy technologies are considered in the design approach. First, energy end-uses for the buildings within the community are optimized based on a set of cost-effective energy efficiency measures that are selected based on a life-cycle cost analysis. Then, renewable energy technologies are considered to meet the energy needs for the residential community and ensure carbon-neutrality on an annual basis. The methodology is applied to design optimal and carbon-neutral hybrid electrical generation systems for three Kuwaiti residential communities with different sizes and energy efficiency designs. For Kuwait, it is found that wind turbines can cost-effectively generate significant electricity to meet most of the energy needs for the residential communities and thus reducing the country's reliance on fuel-based power plants. Specifically, it is found that wind turbines can generate electricity at a cost of $0.068/kWh well below the current grid power production costs of $0.103/kWh. Moreover, the analysis indicates that concentrated solar power (CSP) can be utilized to achieve carbon-neutral residential communities but at a levelized energy cost of $0.13/kWh slightly lower than the current grid power generation and distribution costs of $0.133/kWh.


2011 ◽  
Author(s):  
Steven E. Widergren ◽  
Maria L. Paget ◽  
Thomas J. Secrest ◽  
Patrick J. Balducci ◽  
Alice C. Orrell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document