scholarly journals Electronic structures and photovoltaic properties of a novel phthalocyanine and titanium dioxide phthalocyanine for dye sensitized-solar cells

2021 ◽  
Vol 6 (3) ◽  
pp. 107-115
Author(s):  
Fares A. Yasseen ◽  
Faeq A. Al-Temimei

In the present work, geometries, electronic structures, photovoltaic and optical properties have been carried out on a series of structures formation of phthalocyanine and Titanylphthalocyanine dyes, which are replaced by several subgroup. A density functional theory (DFT) approach together with hybrid function (B3LYP) at SDD basis set was used for the ground state properties in the gas phase. The time-dependent density functional theory (TD-DFT)/ B3LYP was used to investigate the excitation properties of new dyes and analyzed the trends in their optical and redox characteristics. Theoretical principles of HOMO and LUMO energy levels of dyes is requisite in analyzing organic solar cells, thus, HOMO, LUMO levels, open circuit voltage, energy gap, light harvestings efficiency, electron regeneration and electron injection have been calculated and discussed. The outcome of the efficiency, the considered dyes explain absorption energy and wavelength properties that correspond to the solar spectrum requirements. According to results, all the considered materials have a good property and possibility of electron injection procedure from the dyes to conduction band of TiO2, PC60BM or PC60BM. As a result, the molecular changes affect the electronic properties of dye molecules for solar cells. Also, a study of new dyes sensitizers showed that designed materials will be excellent sensitizers. Theoretical designing will prae a way for experimentalists to synthesize the efficient sensitizers for solar cells clearer.

Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 163
Author(s):  
Nguyen Van Trang ◽  
Tran Ngoc Dung ◽  
Ngo Tuan Cuong ◽  
Le Thi Hong Hai ◽  
Daniel Escudero ◽  
...  

A class of D-π-A compounds that can be used as dyes for applications in polymer solar cells has theoretically been designed and studied, on the basis of the dyes recently shown by experiment to have the highest power conversion efficiency (PCE), namely the poly[4,8-bis(5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTS-TZNT) and poly[4,8-bis(4-fluoro-5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTSF-TZNT) substances. Electronic structure theory computations were carried out with density functional theory and time-dependent density functional theory methods in conjunction with the 6−311G (d, p) basis set. The PBDTS donor and the TZNT (naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole)) acceptor components were established from the original substances upon replacement of long alkyl groups within the thiophene and azole rings with methyl groups. In particular, the effects of several π-spacers were investigated. The calculated results confirmed that dithieno[3,2-b:2′,3′-d] silole (DTS) acts as an excellent π-linker, even better than the thiophene bridge in the original substances in terms of well-known criteria. Indeed, a PBDTS-DTS-TZNT combination forms a D-π-A substance that has a flatter structure, more rigidity in going from the neutral to the cationic form, and a better conjugation than the original compounds. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of such a D-π-A substance becomes smaller and its absorption spectrum is more intense and red-shifted, which enhances the intramolecular charge transfer and makes it a promising candidate to attain higher PCEs.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ahmad Irfan ◽  
Abdullah G. Al-Sehemi ◽  
Shabbir Muhammad

Geometries, electronic properties, and absorption spectra of the dyes which are a combination of thiophene based dye (THPD) and IR dyes (covering IR region; TIRBD1-TIRBD3) were performed using density functional theory (DFT) and time dependent density functional theory (TD-DFT), respectively. Different electron donating groups, electron withdrawing groups, and IR dyes have been substituted on THPD to enhance the efficiency. The bond lengths of new designed dyes are almost the same. The lowest unoccupied molecular orbital energies of designed dyes are above the conduction band of TiO2 and the highest occupied molecular orbital energies are below the redox couple revealing that TIRBD1-TIRBD3 would be better sensitizers for dye-sensitized solar cells. The broad spectra and low energy gap also showed that designed materials would be efficient sensitizers.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3897 ◽  
Author(s):  
Tomás Delgado-Montiel ◽  
Rody Soto-Rojo ◽  
Jesús Baldenebro-López ◽  
Daniel Glossman-Mitnik

Ten molecules were theoretically calculated and studied through density functional theory with the M06 density functional and the 6-31G(d) basis set. The molecular systems have potential applications as sensitizers for dye-sensitized solar cells. Three molecules were taken from the literature, and seven are proposals inspired in the above, including the azomethine group in the π-bridge expecting a better charge transfer. These molecular structures are composed of triphenylamine (donor part); different combinations of azomethine, thiophene, and benzene derivatives (π-bridge); and cyanoacrylic acid (acceptor part). This study focused on the effect that the azomethine group caused on the π-bridge. Ground-state geometry optimization, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and their energy levels were obtained and analyzed. Absorption wavelengths, oscillator strengths, and electron transitions were obtained via time-dependent density functional theory using the M06-2X density functional and the 6-31G(d) basis set. The free energy of electron injection (ΔGinj) was calculated and analyzed. As an important part of this study, chemical reactivity parameters are discussed, such as chemical hardness, electrodonating power, electroaccepting power, and electrophilicity index. In conclusion, the inclusion of azomethine in the π-bridge improved the charge transfer and the electronic properties of triphenylamine-based dyes.


2020 ◽  
pp. 174751982092245
Author(s):  
Ismail Abubakari ◽  
Surendra Babu ◽  
Said Vuai ◽  
John Makangara

This work reports density functional theory and time-dependent density functional theory calculations of the optimized geometries, electronic structures and optical properties of molecular dyes D1, D2, D3, D4, D5, and D6 formulated through substitution of 2-hexylthiophene to alizarin using the hybrid functional B3LYP and 6-31G (d,p) basis sets. The dyes are considered as potential pigments for dye-sensitized solar cells. For all dyes, HOMO/LUMO (Highest Occupied Molecular Orbital/Lowest Unoccupied Molecular Orbital) analysis results in positive outcomes upon electron injection to semiconductors and subsequent dye regeneration by the electrolyte. It is found that charge transfer is from the thiophene and unsubstituted ring of alizarin to the substituted ring of alizarin containing C=O and OH groups. The C=O groups are observed to be very important in strengthening the dyes as they are revealed to be the anchoring group bonding to the TiO2 semiconductor. Comparatively, dye D6 is observed to possess high absorption ability and electron injection power through a study of the light-harvesting efficiency and injection driving force (Δ Ginject). The estimated values of open-circuit voltage ( Voc) for the computed dyes are also presented. Decisively, all the considered dyes prove to be useful as potential photosensitizers in solar cells using a TiO2 semiconductor and [Formula: see text] coupling electrolyte.


2021 ◽  
Vol 4 (4) ◽  
pp. 236-251
Author(s):  
A. S. Gidado ◽  
L. S. Taura ◽  
A. Musa

Pyrene (C16H10) is an organic semiconductor which has wide applications in the field of organic electronics suitable for the development of organic light emitting diodes (OLED) and organic photovoltaic cells (OPV). In this work, Density Functional Theory (DFT) using Becke’s three and Lee Yang Parr (B3LYP) functional with basis set 6-311++G(d, p) implemented in Gaussian 03 package was  used to compute total energy, bond parameters, HOMO-LUMO energy gap, electron affinity, ionization potential, chemical reactivity descriptors, dipole moment, isotropic polarizability (α), anisotropy of polarizability ( Δ∝) total first order hyper-polarizability () and second order hyperpolarizability (). The molecules used are pyrene, 1-chloropyrene and 4-chloropyrene  in gas phase and in five different solvents: benzene, chloroform, acetone, DMSO and water. The results obtained show that solvents and chlorination actually influenced the properties of the molecules. The isolated pyrene in acetone has the largest value of HOMO-LUMO energy gap of and is a bit closer to a previously reported experimental value of  and hence is the most stable. Thus, the pyrene molecule has more kinetic stability and can be described as low reactive molecule. The calculated dipole moments are in the order of 4-chloropyrene (1.7645 D) < 1-chloropyrene (1.9663 D) in gas phase. The anisotropy of polarizability ( for pyrene and its derivatives were found to increase with increasing polarity of the solvents.  In a nutshell, the molecules will be promising for organic optoelectronic devices based on their computed properties as reported by this work.


Sign in / Sign up

Export Citation Format

Share Document