DOWNHOLE SIGNAL COMPRESSION AND SURFACE RECONSTRUCTION BASED ON DICTIONARY MACHINE LEARNING

2020 ◽  
Author(s):  
Jian Li ◽  
◽  
Bin Dai ◽  
Christopher M. Jones ◽  
Etienne M. Samson ◽  
...  
Author(s):  
Yinan Wang ◽  
Linfeng Zhang ◽  
Ben Xu ◽  
Xiaoyang Wang ◽  
Han Wang

Abstract Owing to the excellent catalytic properties of Ag-Au binary nanoalloys, nanostructured Ag-Au, such as Ag-Au nanoparticles and nanopillars, has been under intense investigation. To achieve high accuracy in molecular simulations of Ag-Au nanoalloys, the surface properties must be modeled with first-principles precision. In this work, we constructed a generalizable machine learning interatomic potential for Ag-Au nanoalloys based on deep neural networks trained from a database constructed with first-principles calculations. This potential is highlighted by the accurate prediction of Au (111) surface reconstruction and the segregation of Au toward the Ag-Au nanoalloy surface, where the empirical force field failed in both cases. Moreover, regarding the adsorption and diffusion of adatoms on surfaces, the overall performance of our potential is better than the empirical force fields. We stress that the reported surface properties are blind to the potential modeling in the sense that none of the surface configurations is explicitly included in the training database; therefore, the reported potential is expected to have a strong generalization ability to a wide range of properties and to play a key role in investigating nanostructured Ag-Au evolution, where accurate descriptions of free surfaces are necessary.


Author(s):  
Shanshan Hua ◽  
Qi Liu ◽  
Guanxiang Yin ◽  
Xiaohui Guan ◽  
Nan Jiang ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180221
Author(s):  
Amelia Versace ◽  
Vinod Sharma ◽  
Michele A. Bertocci ◽  
Genna Bebko ◽  
Satish Iyengar ◽  
...  

2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Sign in / Sign up

Export Citation Format

Share Document