scholarly journals Effect of Embedment and Spacing Ratios on the Response of Lateral Load of Single and Group Piles

2021 ◽  
Vol 39 (7) ◽  
pp. 1144-1152
Author(s):  
Mohammed Al-Neami ◽  
Mohammed Al-Dahlaki ◽  
Aya Chalob
Keyword(s):  
2014 ◽  
Vol 919-921 ◽  
pp. 824-827
Author(s):  
Sheng Jie Di ◽  
Ming Yuan Wang ◽  
Wen Bo Du

The mechanical behavior of group piles under lateral load is a very complex process of pile-soil interaction. Due to the group effect, the lateral capacity of individual piles can not be fully developed. Deduction factors are applied to the lateral soil reaction, and then lateral analysis is performed for individual piles. After p-y curve for each pile is constructed, the soil pressure of group piles is the sum of soil pressure of single pile at the same deflection under one pile cap. The mechanical different behaviors of the front piles and the back piles are analyzed and compared based on a practical engineering.


PCI Journal ◽  
1973 ◽  
Vol 18 (6) ◽  
pp. 54-71
Author(s):  
John V. Christiansen
Keyword(s):  

Author(s):  
Marcus S Dersch ◽  
Matheus Trizotto ◽  
J Riley Edwards ◽  
Arthur de Oliveira

To address a recent challenge related to broken spikes in premium elastic fastening systems that have led to at least ten derailments and require manual walking inspections as well as build upon mechanistic-empirical (M-E) design principles for future fastening system component design, this paper quantifies the vertical, lateral, and longitudinal fastening system loads under revenue service traffic in a curve that has regularly experienced spike fastener fatigue failures. Previous data has indicated that the high rail of Track 3 experienced the most failures at this location. The data from this investigation sheds light into why failures are more predominant at this location than others and how the vertical, lateral, and longitudinal loads cannot be considered independently. Specifically, while the magnitude of the applied loading was the lowest on the high rail of Track 3, the threshold for failure was also the lowest given the operations at this location led to unloading of the high rail, thus indirectly highlighting the importance of friction within a fastening system. The data also show the high rail of Track 3 was subjected to the highest L/V load ratios and was an outlier in the typical lateral load reversals applied likely leading to spike stress reversals and thus a shorter fatigue life. Finally, based upon the data, it is recommended that to mitigate spike failures, as well as similar fastener challenges in other track types (e.g. rail seat deterioration, etc.) railroads should ensure trains operate close to the balance speed and use fastening system that transfer loads through friction. This study also provides novel data for M-E design of fastening systems.


1977 ◽  
Vol 44 (3) ◽  
pp. 509-511 ◽  
Author(s):  
P. K. Ghosh

The problem of large deflection of a rectangular plate resting on a Pasternak-type foundation and subjected to a uniform lateral load has been investigated by utilizing the linearized equation of plates due to H. M. Berger. The solutions derived and based on the effect of the two base parameters have been carried to practical conclusions by presenting graphs for bending moments and shear forces for a square plate with all edges simply supported.


1994 ◽  
Vol 120 (6) ◽  
pp. 1018-1033 ◽  
Author(s):  
J. Michael Duncan ◽  
Leonard T. Evans ◽  
Phillip S. K. Ooi

Sign in / Sign up

Export Citation Format

Share Document