scholarly journals Device for testing arc breakdown and spark gap protection devices

Author(s):  
Yu. N. Erashova ◽  
I. V. Ivshin ◽  
I. I. Ivshin ◽  
A. N. Tyurin

THE PURPOSE. To justify the need to use an arc breakdown protection device (ABPD) in electrical networks up to 0.4 kV, in order to reduce the number of fires. To analyze the existing types of damage, compare the protection devices against various types of damage in electrical networks up to 0.4 kV. To consider the requirements for ABPD, as well as the main characteristics of protection devices and types of execution. To determine the area of application of the ABPD in electrical installations for various purposes. METHODS. To solve the problems associated with the peculiarities of the arc processes in various electrical circuits and the lack of criteria for many key parameters in terms of the requirements and applicability of the ABPD, it was proposed to conduct a series of tests for specific network parameters in order to understand whether a case can really take place in the current power system when ABPD will not work properly. RESULTS. A test bench has been developed for testing the protection devices against arc breakdown and spark gaps for the effectiveness of operation for specific network conditions, instructions for its operation are given. CONCLUSION. It has been established that a sequential arc breakdown can only switch off an arc breakdown protection device (ABPD) and, accordingly, increase the safety of operation of electrical networks up to 0.4 kV in order to reduce fires caused by violation of the rules for the design and operation of electrical equipment. The proposed device for testing protection devices against arc breakdown and spark gaps allows you to control the fact of mandatory operation of the ultrasonic detector for a certain time and formulate the requirements necessary for the design of power grids.

Author(s):  
Yu. N. Erashova ◽  
I. V. Ivshin ◽  
I. I. Ivshin ◽  
A. N. Tyurin

THE PURPOSE. To justify the need to use an arc breakdown protection device (ABPD) in electrical networks up to 0.4 kV, in order to reduce the number of fires. To analyze the existing types of damage, compare the protection devices against various types of damage in electrical networks up to 0.4 kV. To consider the requirements for ABPD, as well as the main characteristics of protection devices and types of execution. To determine the area of application of the ABPD in electrical installations for various purposes. METHODS. To solve the problems associated with the peculiarities of the arc processes in various electrical circuits and the lack of criteria for many key parameters in terms of the requirements and applicability of the ABPD, it was proposed to conduct a series of tests for specific network parameters in order to understand whether a case can really take place in the current power system when ABPD will not work properly. RESULTS. A test bench has been developed for testing the protection devices against arc breakdown and spark gaps for the effectiveness of operation for specific network conditions, instructions for its operation are given. CONCLUSION. It has been established that a sequential arc breakdown can only switch off an arc breakdown protection device (ABPD) and, accordingly, increase the safety of operation of electrical networks up to 0.4 kV in order to reduce fires caused by violation of the rules for the design and operation of electrical equipment. The proposed device for testing protection devices against arc breakdown and spark gaps allows you to control the fact of mandatory operation of the ultrasonic detector for a certain time and formulate the requirements necessary for the design of power grids.


Author(s):  
I. V. Novash ◽  
F. A. Romaniuk ◽  
Yu. V. Rumiantsev ◽  
V. Yu. Rumiantsev

The implementation of information support for PC-based and hardware-software based sets for digital overcurrent protection devices and their models testing using MatLab-Simulink environment is considered. It is demonstrated that the mathematical modeling of a part of the power system – viz. of the generalized electric power object – could be based on rigid and flexible models. Rigid models implemented on the basis of mathematical description of electrical and magnetic circuits of a power system can be considered as a reference model for the simulation results that have been obtained with the aid of another simulation system to be compared with. It is proposed to implement flexible models for generalized electric power object in the MatLabSimulink environment that includes the SimPowerSystems component library targeted to power system modeling. The features of the parameters calculation of the SimPowerSystems component library blocks that the power system model is formed of are considered. Out of the Simulink standard blocks the models of a wye-connected current transformers were composed as well as the digital overcurrent protection, missing in the component library. A comparison of simulation results of one and the same generalized electric power object implemented in various PC-based software packages was undertaken. The divergence of simulation results did not exceed 3 %; the latter allows us to recommend the MatLab-Simulink environment for information support creation for hardware-software based sets for digital overcurrent protection devices testing. The structure of the hardware-software based set for digital overcurrent protection device testing using the Omicron CMC 356 has been suggested. Time to trip comparison between the real digital protection device МР 801 and the model with the parameters which are exactly match the parameters of the prototype device was carried out using the identical test inputs. The results of the tests demonstrated a close coincidence of results (the divergence of not more than 8 %), that confirms the possibility of using the suggested hardware-software based test set during the development and debugging of new digital relay protection devices.


2019 ◽  
Vol 114 ◽  
pp. 04005
Author(s):  
Ngo Van Cuong ◽  
Lidiia I. Kovernikova

The parameters of electrical network modes often do not meet the requirements of Russian GOST 32144-2013 and the guidelines of Vietnam. In the actual operating conditions while there is the non-sinusoidal mode in electrical networks voltage and current harmonics are present. Harmonics result in overheating and damage of power transformers since they cause additional active power losses. Additional losses lead to the additional heat release, accelerating the process of insulating paper, transformer oil and magnetic structure deterioration consequently shortening the service life of a power transformer. In this regard there arises a need to develop certain scientific methods that would help demonstrate that low power quality, for instance could lead to a decrease in the electrical equipment service life. Currently we see a development of automated systems for continuous monitoring of power quality indices and mode parameters of electrical networks. These systems could be supplemented by characteristics calculating programs that give out a warning upon detection of the adverse influence of voltage and current harmonics on various electrical equipment of both electric power providers and electric power consumers. A software program presented in the article may be used to predict the influence of voltage and current harmonics on power transformers.


2014 ◽  
Vol 986-987 ◽  
pp. 622-629
Author(s):  
Tian Long Shao ◽  
Jian Zhang ◽  
Xu Nan Zhao

As a kind of renewable clean energy, the constant access of wind power to power grids is bound to have a great impact on the power system. Based on the grid structure in Fuxin, this paper will state the difficulty of peak regulation and the matter of wasting wind power caused by the large-scale wind power integration and put forward some reasonable methods for using the wasting wind power in the heating in winter. The relevant results indicate that capacity of local consumption of wasting wind power can be improved. Under the circumstances, it can be conductive to solve the problem of wasting wind power results from the difficulty of peak regulation as well as inspire the power system planners.


2021 ◽  
Vol 70 (12) ◽  
pp. 2041-2045
Author(s):  
Seung-Jin Kim ◽  
Jae-Ho Hur ◽  
Tae-Hyun Kim ◽  
Young-Il Kim ◽  
Hosung Jung

2014 ◽  
Vol 986-987 ◽  
pp. 404-411
Author(s):  
Qi Yang ◽  
Xin Zeng ◽  
Qing Kui Guo ◽  
Yong Yu Yuan ◽  
Jian Jun Sun ◽  
...  

Through the summary of typical accident, the problem between the over speed protection device of thermal power unit steam turbine and over frequency generator tripping measure is analyzed in island operation of sending ends of regional grid. The optimizing allocation principle between over frequency generator tripping measure and over speed protection equipment is put forward. By a variety of program analysis and comparison, the optimizing scheme is given. Finally, the typical models of thermal power unit steam turbine over speed protection are established in software. Based on a practical power system as an example, the whole process of islanding is simulated. Checking the coordination with existing over frequency generator tripping measure and the relay setting related to power network in the islanding operation, the validity and practicability of the optimal scheme and principle are analyzed. With the method, the regional grid will remain safe and stable.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208168 ◽  
Author(s):  
Octavian Mihai Machidon ◽  
Cornel Stanca ◽  
Petre Ogrutan ◽  
Carmen Gerigan ◽  
Lia Aciu

Sign in / Sign up

Export Citation Format

Share Document