Analysis of AC-DC Converter Circuit Performance with Difference Piezoelectric Transducer Array Connection

Author(s):  
Nik Ahmad Zainal Abidin ◽  
◽  
Norkharziana Mohd Nayan ◽  
Azuwa Ali ◽  
N. A. Azli ◽  
...  

This research presents a simulation analysis for the AC-DC converter circuit with a different configurations of the array connection of the piezoelectric sensor. The selection of AC-DC converter circuits is full wave bridge rectifier (FWBR), parallel SSHI (P-SSHI) and parallel voltage multiplier (PVM) with array configuration variation in series (S), parallel (P), series-parallel (SP) and parallel-series (PS). The system optimizes with different load configurations ranging from 10 kΩ to 1 MΩ. The best configuration of AC-DC converter with an appropriate array piezoelectric connection producing the optimum output of harvested power is presented. According to the simulation results, the harvested power produced by using P-SSHI converter connected with 3 parallel piezoelectric transducer array was 85.9% higher than for PVM and 15.88% higher than FWBR.

2020 ◽  
Vol 1432 ◽  
pp. 012042
Author(s):  
Nik Ahmad Kamil Zainal Abidin ◽  
Norkharziana Mohd Nayan ◽  
M M Azizan ◽  
Azuwa Ali ◽  
Nuriziani Hussin ◽  
...  

2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi89-vi89
Author(s):  
Shay Levi ◽  
Ariel Naveh ◽  
Ze’ev Bomzon ◽  
Eilon D Kirson ◽  
Uri Weinberg

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7538
Author(s):  
Wenkai Huang ◽  
Wei Hu ◽  
Tao Zou ◽  
Junlong Xiao ◽  
Puwei Lu ◽  
...  

Most existing wall-climbing robots have a fixed range of load capacity and a step distance that is small and mostly immutable. It is therefore difficult for them to adapt to a discontinuous wall with particularly large gaps. Based on a modular design and inspired by leech peristalsis and internal soft-bone connection, a bionic crawling modular wall-climbing robot is proposed in this paper. The robot demonstrates the ability to handle variable load characteristics by carrying different numbers of modules. Multiple motion modules are coupled with the internal soft bone so that they work together, giving the robot variable-step-distance functionality. This paper establishes the robotic kinematics model, presents the finite element simulation analysis of the model, and introduces the design of the multi-module cooperative-motion method. Our experiments show that the advantage of variable step distance allows the robot not only to quickly climb and turn on walls, but also to cross discontinuous walls. The maximum climbing step distance of the robot can reach 3.6 times the length of the module and can span a discontinuous wall with a space of 150 mm; the load capacity increases with the number of modules in series. The maximum load that modules can carry is about 1.3 times the self-weight.


2015 ◽  
Vol 785 ◽  
pp. 611-615
Author(s):  
Nuril Yaqin Ab Rahim ◽  
Shahril Irwan Sulaiman ◽  
Zulkifli Othman

This paper presents sizing software for the design of a solar farm system. The sizing software provides few guidelines to the designer for the planning procedure before the final of optimum array configuration is decided. Some specifications that the designer may consider are the type of PV module, the type of inverter, the available space for installation, the required energy per year and also the sum of money to be allocated for the instalment. The output result of this software will be the suggestion of possible configuration of the total number of modules in series per string with the total number of strings in parallel. This software also does the prediction of the system performances such as final yield, specific yield and performance ratio. The expected income is provided by the software is based on the Feed-in Tariff rates and the energy generated by the system.


2015 ◽  
Vol 17 (suppl 5) ◽  
pp. v128.4-v128 ◽  
Author(s):  
Cornelia Wenger ◽  
Ricardo Salvador ◽  
Peter J. Basser ◽  
Pedro C. Miranda

Author(s):  
Faisal Saeed ◽  
Haider Ali Tauqeer ◽  
Hasan Erteza Gelani ◽  
Muhammad Hassan Yousuf

Partial shading on solar photovoltaic (PV) arrays is a prevalent problem in photovoltaic systems that impair the performance of PV modules and is responsible for reduced power output as compared to that in standard irradiance conditions thereby resulting in the appearance of multiple maximas on panel output power characteristics. These maxims contribute to mismatch power losses among PV modules. The mismatch losses depend on shading characteristics together with different interconnected configuration schemes of PV modules. The research presents a comparative analysis of partial shading effects on a 4 x4 PV array system connected in series(S), parallel (P), serries-parallel (SP),total-cross-tied (TCT),central-cross-tied(CCT),bridge-linked(BL),bridge-linked total cross-tied (BLTCT) ,honey-comb(HC), honey-comb total-cross-tied (HCTCT) and ladder (LD) configurations using MATLAB/Simulink. The PV module SPR-X20-250-BLK was used for modeling and simulation analysis. Each module is comprised of 72 number of PV cells and a combination of 16 PV modules was employed for the contextual analysis. Accurate mathematical modeling for the HCTCT configuration under partial shading conditions (PSCs) is provided for the first time and is verified from the simulation. The different configuration schemes were investigated under short-narrow,short-wide,long-narrow,long-wide, diagonal, entire row distribution, and entire column distribution partial shading condition patterns with mathematical implementation and simulation of passing clouds. The performance of array configurations is compared in terms of maximum power generated ), mismatch power loss (∆), relative power loss ) and the fill factor (FF). It was inferred that on average, TCT configuration yielded maximum power generation under all shading patterns among all PV modules interconnection configurations with minimum mismatch power losses followed by hybrid and conventional PV array configurations respectively.


Sign in / Sign up

Export Citation Format

Share Document