scholarly journals South American species Solanum alandiae Card. and S. okadae Hawkes et Hjerting as potential sources of genes for potato late blight resistance

2020 ◽  
Vol 181 (1) ◽  
pp. 73-83
Author(s):  
O. A. Muratova (Fadina) ◽  
M. P. Beketova ◽  
M. A. Kuznetsova ◽  
E. V. Rogozina ◽  
E. E. Khavkin

For several decades, wild species of Solanum L. section Petota Dumort. have been involved in potato cultivar breeding for robust resistance to pests and diseases. Potato late blight (LB) is caused by oomycete Phytophthora infestans (Mont.) de Bary, and the genes for race-specific resistance to P. infestans (Rpi genes) have been introgressed into cultivated potatoes by remote crosses and trans- or cisgenesis, first from S. demissum Buk. and, more recently, from other wild species, such as S. bulbocastanum Dun., S. stoloniferum Schlechtd. et Bché, and S. venturii Hawkes et Hjerting (according to the nomenclature by Hawkes, 1990). Most wild species already involved in breeding for LB resistance came from North and Central Americas: series Bulbocastana (Rydb.) Hawkes, Demissa Buk. and Longipedicellata Buk., and some Rpi genes of these species have been already characterized in much detail. Rpi genes of South American species, including the series Tuberosa (Rydb.) Hawkes, have not been sufficiently investigated. Among the latter, this study focuses on the Rpi genes of S. alandiae Card. and S. okadae Hawkes et Hjerting. Four accessions of S. alandiae, one accession of S. okadae and 11 clones of interspecific potato hybrids comprising S. alandiae germplasm from the VIR collection were PCR-screened using specific SCAR (Sequence Characterized Amplified Region) markers for eight Rpi genes. SCAR amplicons of five Rpi genes registered in this study were validated by comparing their sequences with those of prototype genes deposited in the NCBI Genbank. Among the structural homologues of Rpi genes found in S. alandiae and S. okadae, of special interest are homologues of CC-NB-LRR resistance genes with broad specificity towards P. infestans races, in particular R2=Rpi-blb3, R8, R9a, Rpi-vnt1 and Rpi-blb2 (94–99, 94–99, 86–89, 92–98 and 91% identity with the prototype genes, respectively). Our data may help to better understand the process of Rpi gene divergence along with the evolution of tuberbearing Solanum species, particularly in the series Tuberosa.

2014 ◽  
Vol 15 (2) ◽  
pp. 47
Author(s):  
Eny Ida Riyanti ◽  
Edy Listanto ◽  
Alberta Dinar Ambarwati

Late blight caused by Phytophthora infestans is an important disease on potato.  Several potato hybrids have been generated by crossing local varieties (Atlantic and Granola) with Katahdin SP951 which contains late blight resistance gene RB.  Prior to release, these hybrids need to be evaluated for their environ-mental effects on non-target organisms and natural pests and diseases. The objectives of the study were to investigate the effect of LBR potato hybrids on beneficial soil microbes, pests and diseases. The trial was conducted in the confined field trial (CFT) in Lembang, West Java. The parental non-transgenic (NT) clones (Granola, Atlantic and Katahdin) and LBR hybrids (four clones of Atlantic x Katahdin SP951 hybrids; 10 clones of Granola x Katahdin SP951) were planted at a plant spacing of 30 cm x 70 cm. Fungicide applications were used as treat-ments (no spray, five and twenty times sprays). The experi-ment was arranged in a randomized completely block design with three replications. The parameters determined were popula-tions of N2 fixing and P solubilizing bacteria, soil C/N ratio as well as natural pests and diseases. The results showed that the transgenic LBR potato hybrids did not have negative effect on N fixing bacteria. The bacterial populations were around 1010-11 cells g-1 soil before planting, 1012 cells at 1.5 months after planting (MAP) and 108 cells after harvest. For P- solubilizing bacteria, their populations were 1010 cells before planting, 1012 cells at 1.5 MAP and 1011 cells g-1  soil after harvest. The soil C/N ratio of the transgenic plot was not statistically different compared to non-transgenic plot, i.e. 12-15 before planting, 10-11 at 1.5 MAP, and 10 after harvest in non-spray plot. Pests and diseases such as Alternaria solani, Liriomyza, potato tubber moth, aphid and mites on the transgenic and non-transgenic plots were statistically not different. The resistance score for A. solani was 7.2 (parental tansgenic) and 7.6 (parental non-transgenic); for Liriomyza it was 2.07 (parental transgenic) and 2.32 insect per plant (parental non-transgenic), the PTM was 0.63 (parental transgenic) and 0.73 insect per plant (parental non-transgenic), aphid and mites were 0.75 (parental transgenic) and 1.68 insects per plant (parental non-transgenic). The study indicated that LBR potato hybrids did not have any negative impacts on non-target organisms.


2020 ◽  
Author(s):  
Yuexin Li ◽  
Degang Zhao

Abstract Background: Late blight seriously threatens potato cultivation worldwide. The severe and widespread damage caused by the fungal pathogen can lead to drastic decreases in potato yield. Although grafting technology has been widely used to improve crop resistance, the effects of grafting on potato late blight resistance as well as the associated molecular mechanisms remain unclear. Therefore, we performed RNA transcriptome sequencing analysis and the late blight resistance testing of the scion when the potato late blight-resistant variety Qingshu 9 and the susceptible variety Favorita were used as the rootstock and scion, respectively, and vice versa. The objective of this study was to evaluate the influence of the rootstock on scion disease resistance and to clarify the related molecular mechanisms.Results: A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the expression levels of genes related to plant–pathogen interactions, plant mitogen-activated protein kinase (MAPK) signaling pathways, and plant hormone signal transduction pathways were significantly up-regulated in the scion when Qingshu 9 was used as the rootstock. These genes included late blight response genes encoding calcium-dependent protein kinases (CDPKs), chitin elicitor receptor kinases (CERKs), LRR receptor serine/threonine protein kinases (LRR-LRKs), NPR family proteins in the salicylic acid synthesis pathway, and MAPKs. When Favorita was used as the rootstock, the expression levels of the late blight response genes were not up-regulated in the Qingshu 9 scion, but the expression levels of the genes related to proline metabolism, fatty acid chain elongation, and diterpenoid biosynthesis pathways were down-regulated. Resistance results showed that self-grafting of the susceptible variety and grafting with the resistant variety as the rootstock increased the resistance of the susceptible scion to late blight. However, the resistance was stronger after grafting with the resistant variety as the rootstock. Using the susceptible variety as the rootstock decreased the late blight resistance of the resistant scion.Conclusions: Our results showed that changes to the expression of disease resistance genes in the scion after grafting are associated with late blight resistance. The results provide the basis for exploring the molecular mechanism underlying the effects of rootstocks on scion disease resistance.


Author(s):  
Nadezhda Zoteyeva ◽  
Guna Sprūde ◽  
Natalia Klimenko ◽  
Ieva Mežaka

AbstractLate blight (agent Phytophthora infestans) and potato cyst nematode (PCN) caused by Globodera rostochiensis are economically important pathogens, which may significantly reduce potato yields. In this study interspecific potato hybrids were used as a source of resistance for combined resistance to economically important potato pathogens: late blight and cyst nematode. The aim of our study was to identify hybrid progenies with combined resistance to both pathogens and to verify the applicability of several molecular markers associated with resistance to G. rostochiensis pathotype Ro1 to identify resistant plants. Ninety-two clones of eleven original interspecific potato hybrids obtained in crosses with the cultivated S. tuberosum group tuberosum, S. tuberosum group Andigena, S. tuberosum group Phureja and wild S. guerreroense, S. microdontum, S. kurtzianum, S. neoantipoviczii and S. tarijense potato species were screened in bioassays and by molecular markers. PCN resistant or moderately resistant clones were found among the progenies of nine hybrids. Results were highly correlated with resistance status detected by molecular markers linked to the H1 (marker 57R) and Gro1-4 (marker Gro1) genes. Marker CP113 (linked to the H1 gene) was not polymorphic and failed to detect resistance status. Combination of foliar late blight resistance and resistance to PCN was identified in hybrids obtained in crosses with plants of species S. microdontum, S. tarijense and S. phureja and in the hybrid between S. guerreroense and Black’s P. infestans race differential carrying gene R-5.


2014 ◽  
Vol 40 (1) ◽  
pp. 10-13
Author(s):  
E. V. Rogozina ◽  
V. A. Kolobaev ◽  
E. E. Khavkin ◽  
M. A. Kuznetsova ◽  
M. P. Beketova ◽  
...  

2006 ◽  
Vol 112 (4) ◽  
pp. 674-687 ◽  
Author(s):  
G. M. Rauscher ◽  
C. D. Smart ◽  
I. Simko ◽  
M. Bonierbale ◽  
H. Mayton ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Edith Zevallos ◽  
Josue Inga ◽  
Fernando Alvarez ◽  
Karina Marmolejo ◽  
Rocio Paitan ◽  
...  

Abstract Background The native Andean potatoes, despite their low yield, have a large diversity that is conserved by subsistence farmers in Peru, due to their culinary characteristics and other qualities. However, this diversity is threatened by the impacts of climate change, which would directly affect the food security of these people, and eventually ours. Among its qualities of resistance to pests and diseases, there could be a genetic source of resistance to late blight, one of the most damaging diseases of the potato crop in the world. In this assay, 103 native landraces collected from local farmers in the Pasco region of Peru were subjected to natural infection conditions with Phytophthora infestans to identify potential resistant landraces within them. Results The 103 landraces assessed showed a broad variety of responses and were classified as “resistant” (22%), “moderately resistant” (57%), and “susceptible landraces” (21%). A relative effect of the disease in the yield is also shown, which is already low for commercial intentions. Conclusion Within this representative sample of the native potato diversity of the Pasco region, at least 23 local varieties grown by subsistence farmers have resistance qualities against eventual late blight disease.


Sign in / Sign up

Export Citation Format

Share Document