scholarly journals Identification of Interspecific Potato Hybrids with Combined Resistance to Late Blight (Phytophthora Infestans) and Nematode (Globodera Rostochiensis)

Author(s):  
Nadezhda Zoteyeva ◽  
Guna Sprūde ◽  
Natalia Klimenko ◽  
Ieva Mežaka

AbstractLate blight (agent Phytophthora infestans) and potato cyst nematode (PCN) caused by Globodera rostochiensis are economically important pathogens, which may significantly reduce potato yields. In this study interspecific potato hybrids were used as a source of resistance for combined resistance to economically important potato pathogens: late blight and cyst nematode. The aim of our study was to identify hybrid progenies with combined resistance to both pathogens and to verify the applicability of several molecular markers associated with resistance to G. rostochiensis pathotype Ro1 to identify resistant plants. Ninety-two clones of eleven original interspecific potato hybrids obtained in crosses with the cultivated S. tuberosum group tuberosum, S. tuberosum group Andigena, S. tuberosum group Phureja and wild S. guerreroense, S. microdontum, S. kurtzianum, S. neoantipoviczii and S. tarijense potato species were screened in bioassays and by molecular markers. PCN resistant or moderately resistant clones were found among the progenies of nine hybrids. Results were highly correlated with resistance status detected by molecular markers linked to the H1 (marker 57R) and Gro1-4 (marker Gro1) genes. Marker CP113 (linked to the H1 gene) was not polymorphic and failed to detect resistance status. Combination of foliar late blight resistance and resistance to PCN was identified in hybrids obtained in crosses with plants of species S. microdontum, S. tarijense and S. phureja and in the hybrid between S. guerreroense and Black’s P. infestans race differential carrying gene R-5.

2020 ◽  
Vol 3 (1) ◽  
pp. 28-37
Author(s):  
Rishav Pandit ◽  
Ravi Bhatta ◽  
Pooja Bhusal ◽  
Basistha Acharya ◽  
Subash Subedi ◽  
...  

Developing host resistance is an economic and long-term approach to disease management; however, resistance reactions that differ depending on the genotypes. Potato late blight is the devastating disease caused due to Phytophthora infestans (Mont.) de Bary.  In order to identify late blight resistance in potato genotypes, seven local potato cultivars (Bardiya Rato Local, Bardiya Seto Local, Cardinal, Deukhuri Rato Local, Deukhuri Seto Local, Kailali Local and Khumal Ujjowal) were evaluated in randomized complete block design (RCBD) with three replications during October 2018 to January 2019 on naturally infested soils in Deukhuri, Dang, Nepal. Results showed that significantly the highest disease incidence (99.17%), and the highest disease severity (88%) were found on Cardinal followed by Deukhuri Rato Local (64%), and Deukhuri Seto Local (60%). Potato cultivar namely Khumal Ujjowal was moderately resistant, whereas Deukhuri Rato local and Deukhuri Seto Local were susceptible to late blight disease. Significantly the highest yield (12.67 t ha-1) was produced by Khumal Ujjowal followed by Bardiya Rato Local (10.78 t ha-1) and Bardiya Seto Local (9.40 t ha-1). The disease incidence and Area under disease progressive curve (AUDPC) value was negatively co-related with the tuber yield. The potato cultivar Khumal Ujjowal followed by Bardiya Rato Local were found moderately resistant to late blight disease in Deukhuri conditions. This study suggests that potato cultivar Bardiya Rato Local can be grown for higher tuber production in Dang and similar topographic regions.


2020 ◽  
Vol 3 (1) ◽  
pp. 28-37
Author(s):  
Rishav Pandit ◽  
Ravi Bhatta ◽  
Pooja Bhusal ◽  
Basistha Acharya ◽  
Subash Subedi ◽  
...  

Developing host resistance is an economic and long-term approach to disease management; however, resistance reactions that differ depending on the genotypes. Potato late blight is the devastating disease caused due to Phytophthora infestans (Mont.) de Bary.  In order to identify late blight resistance in potato genotypes, seven local potato cultivars (Bardiya Rato Local, Bardiya Seto Local, Cardinal, Deukhuri Rato Local, Deukhuri Seto Local, Kailali Local and Khumal Ujjowal) were evaluated in randomized complete block design (RCBD) with three replications during October 2018 to January 2019 on naturally infested soils in Deukhuri, Dang, Nepal. Results showed that significantly the highest disease incidence (99.17%), and the highest disease severity (88%) were found on Cardinal followed by Deukhuri Rato Local (64%), and Deukhuri Seto Local (60%). Potato cultivar namely Khumal Ujjowal was moderately resistant, whereas Deukhuri Rato local and Deukhuri Seto Local were susceptible to late blight disease. Significantly the highest yield (12.67 t ha-1) was produced by Khumal Ujjowal followed by Bardiya Rato Local (10.78 t ha-1) and Bardiya Seto Local (9.40 t ha-1). The disease incidence and Area under disease progressive curve (AUDPC) value was negatively co-related with the tuber yield. The potato cultivar Khumal Ujjowal followed by Bardiya Rato Local were found moderately resistant to late blight disease in Deukhuri conditions. This study suggests that potato cultivar Bardiya Rato Local can be grown for higher tuber production in Dang and similar topographic regions.


2021 ◽  
Vol 57 (No. 4) ◽  
pp. 279-288
Author(s):  
Jose Ignacio Ruiz de Galarreta ◽  
Alba Alvarez-Morezuelas ◽  
Nestor Alor ◽  
Leire Barandalla ◽  
Enrique Ritter

The oomycete Phytophthora infestans is responsible for the disease known as late blight in potato and tomato. It is the plant pathogen that has caused the greatest impact on humankind so far and, despite all the studies that have been made, it remains the most important in this crop. In Spain during the last years a greater severity of the disease has been observed in both, potato and tomato, probably due to genetic changes in pathogen populations described recently. The aim of this study was the characterization of the physiological strains of 52 isolates of P. infestans obtained in different potato-growing areas in Spain. For this purpose, inoculations on detached leaves were performed in order to determine compatibility or incompatibility reactions. A total of 17 physiological races were found. The less frequent virulence factors were Avr5 and Avr8. By studying the epidemiology of the pathogen, a specific breeding program for late blight resistance can be implemented.


PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10536 ◽  
Author(s):  
Dennis A. Halterman ◽  
Yu Chen ◽  
Jiraphan Sopee ◽  
Julio Berduo-Sandoval ◽  
Amilcar Sánchez-Pérez

Author(s):  
Xiao Lin ◽  
Tianqiao Song ◽  
Sebastian Fairhead ◽  
Kamil Witek ◽  
Agathe Jouet ◽  
...  

SummaryPotato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence, or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance.To identify the P. infestans effector recognized by Rpi-amr1, we screened available effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors.By using SMRT and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569 which triggers a highly specific cell death response when transiently co-expressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1.Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RxLR effector families, and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RxLR effector family that is associated with the recognition by Rpi-amr1.


Plant Disease ◽  
2021 ◽  
Author(s):  
Weiya Xue ◽  
Kathleen G. Haynes ◽  
Xinshun Qu

Resistance to late blight, caused by Phytophthora infestans clonal lineage US-23, in 217 old and modern potato cultivars was evaluated in field trials in 2016 and 2017 in Pennsylvania. Significant differences in resistance were found among these cultivars (P < 0.0001). Significant interaction between cultivars and environments was found (P < 0.0001). The values of relative area under the disease progress curve ranged from 0 to 0.5841 in 2016 and from 0 to 0.5469 in 2017. Broad-sense heritability of late blight resistance was estimated to be 0.91 with a 95% confidence interval of 0.88 to 0.93. Cluster analysis classified the cultivars into 5 groups: resistant, moderately resistant, intermediate, moderately susceptible, and susceptible. Thirty cultivars showing resistance and 32 cultivars showing moderate resistance were identified. The 217 cultivars were also evaluated for foliar maturity, tuber yield and resistance to early blight, caused by Alternaria solani. A few cultivars with late blight resistance independent of late maturity were found. Late blight resistance and early blight resistance were positively correlated, and 17 cultivars possessed resistance to both diseases. Yield tradeoff associated with late blight resistance was not observed among the cultivars in the absence of disease pressure.


1959 ◽  
Vol 37 (1) ◽  
pp. 41-49 ◽  
Author(s):  
K. M. Graham ◽  
J. S. Niederhauser ◽  
Leopoldo Servin

Solanum balbocastanum Dun. was collected extensively throughout its range in Mexico and Guatemala. Experimental self- and cross-pollinations showed that the species is highly self-sterile and consists of cross-sterile and cross-fertile individuals. Self-sterility may be due to the presence of incompatibility factors or to triploidy. Authentic hybrids were produced between S. bulbocastanum and S. trifidum Correll, and between S. bulbocastanum and S. pinnatisectum Dun.After inoculation with race 1.2.3.4 of Phytophthora infestans three types of reaction were observed among 1148 seedlings of S. bulbocastanum: immunity with no perceptible lesions, resistance expressed by non-sporulating lesions of the hypersensitive type, and susceptibility indicated by large sporulating necrotic lesions. Seedlings resistant to an isolate of race 1.2.3.4 of Canadian origin did not always show the same level of resistance to a Mexican isolate of the same race. Varying degrees of field resistance were observed among seedling plants, while tuber-propagated plants were generally field immune. Solanum bulbocastanum is considered a mixture of resistant and susceptible genotypes.


2014 ◽  
Vol 40 (1) ◽  
pp. 10-13
Author(s):  
E. V. Rogozina ◽  
V. A. Kolobaev ◽  
E. E. Khavkin ◽  
M. A. Kuznetsova ◽  
M. P. Beketova ◽  
...  

Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 947-953 ◽  
Author(s):  
Shiri Klarfeld ◽  
Avia (Evgenia) Rubin ◽  
Yigal Cohen

Four A1 field isolates and one A2 field isolate of Phytophthora infestans were crossed to produce oospores in tomato leaves. The oospores were extracted and mixed with perlite and water, and healthy tomato leaves were used as bait for oospore-progeny infection. Twenty-nine lesions were obtained from the four crosses and 283 single-sporangium isolates were recovered and tested on four tomato differential lines carrying different major genes (Ph-0, Ph-1, Ph-2, and 3707) for late blight resistance. The pathogenic fitness (number of sporangia per unit leaf area) of parental and progeny isolates was strongly dependent on the host genotype; it decreased in the order Ph-0 > Ph-1 > Ph-2 > 3707. The A2 parent had a higher pathogenic fitness than the A1 parents on Ph-0 and Ph-1 but similar, lower fitness on Ph-2. Different levels of pathogenic fitness were observed across all isolates on Ph-0, although Ph-0 lacks resistance genes. Pathogenic fitness on one tomato genotype was not related to the pathogenic fitness on the other tomato genotypes. Some isolates exhibited reduced pathogenic fitness relative to the respective A1 parent, whereas others demonstrated a higher pathogenic fitness compared with the A2 parent. The tomato genotype Solanum pimpinellifolium L3707/5 was resistant to all five parental isolates of P. infestans. However, 37 of the 283 progeny isolates from 11 different lesions had compatible reactions with this line, producing up to 31 × 103 sporangia/cm2. Overall, reduced fitness was more frequent among the progeny isolates than increased fitness.


Sign in / Sign up

Export Citation Format

Share Document