blight disease
Recently Published Documents


TOTAL DOCUMENTS

1190
(FIVE YEARS 485)

H-INDEX

46
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 396
Author(s):  
Yue Shi ◽  
Liangxiu Han ◽  
Anthony Kleerekoper ◽  
Sheng Chang ◽  
Tongle Hu

The accurate and automated diagnosis of potato late blight disease, one of the most destructive potato diseases, is critical for precision agricultural control and management. Recent advances in remote sensing and deep learning offer the opportunity to address this challenge. This study proposes a novel end-to-end deep learning model (CropdocNet) for accurate and automated late blight disease diagnosis from UAV-based hyperspectral imagery. The proposed method considers the potential disease-specific reflectance radiation variance caused by the canopy’s structural diversity and introduces multiple capsule layers to model the part-to-whole relationship between spectral–spatial features and the target classes to represent the rotation invariance of the target classes in the feature space. We evaluate the proposed method with real UAV-based HSI data under controlled and natural field conditions. The effectiveness of the hierarchical features is quantitatively assessed and compared with the existing representative machine learning/deep learning methods on both testing and independent datasets. The experimental results show that the proposed model significantly improves accuracy when considering the hierarchical structure of spectral–spatial features, with average accuracies of 98.09% for the testing dataset and 95.75% for the independent dataset, respectively.


Plant Disease ◽  
2022 ◽  
Author(s):  
Francisco Beluzán ◽  
Xavier Miarnau ◽  
Laura Torguet ◽  
Lourdes Zazurca ◽  
Paloma Abad-Campos ◽  
...  

Twenty-five almond cultivars were assessed for susceptibility to Diaporthe amygdali, causal agent of twig canker and shoot blight disease. In laboratory experiments, growing twigs were inoculated with four D. amygdali isolates. Moreover, growing shoots of almond cultivars grafted onto INRA ‘GF-677’ rootstock were used in four-year field inoculations with one D. amygdali isolate. In both type of experiments, inoculum consisted of agar plugs with mycelium, which were inserted underneath the bark and the lesion lengths caused by the fungus were measured. Necrotic lesions were observed in the inoculated almond cultivars both in laboratory and field tests, confirming the susceptibility of all the evaluated cultivars to all the inoculated isolates of D. amygdali. Cultivars were grouped as susceptible or very susceptible according to a cluster analysis. The relationship between some agronomic traits and cultivar susceptibility was also investigated. Blooming and ripening times were found relevant variables to explain cultivars performance related to D. amygdali susceptibility. Late and very late blooming, and early and medium ripening cultivars were highly susceptible to D. amygdali. Our results may provide valuable information that could assist in ongoing breeding programs of this crop and additionally in the selection of cultivars for new almond plantations.


Author(s):  
Haris Butt ◽  
Kubilay Kurtulus Bastas

Fire blight, affecting more than one hundred and thirty species in the Rosaceae, is probably the most destructive disease affecting pear and apple cultivars in many countries. Currently, there are no effective synthetic compounds with systemic properties. Other major problem is the occurrence and spread of strains of Erwinia amylovora with resistance to streptomycin and copper. Taken into consideration the human and environmental health, the use of biocontrol agents either as an alternative or as a supplement within an integrated fire blight management strategy has attracted worldwide attention. In this study, E. amylovora solution of 107 CFU ml-1 was treated with bio-control agents, Bacillus subtilis str. QST 713, B. amyloliquefaciens str. MBI 600 and their mixture (at solution densities of 106, 107 and 108 CFU ml-1 for each one) on Petri dishes, containing King’s B medium and, compared with positive (streptomycin sulphate) and negative (sterile distilled water) controls. In vivo studies were performed on two-year-old apple cv. Gala seedlings grown in 45-cm-diameter pots containing a sterilized mix of soil–sand–peat under controlled greenhouse conditions (85% relative humidity, 25°C temperature and 16h of day light). The plants were irrigated as needed by drip-irrigation and each pot received a mineral solution (NPK: 20–20–20) at 2 g l-1 twice. When plant shoots reached a length of 30-35 cm, bio-control agents, individually and their mixture, were applied to the plants by a hand-sprayer. Obtaining the data, 108 CFU ml-1 of Bacillus spp. suspension mixture showed strongest in vitro antibacterial effect (26mm) among the tested treatments after positive control streptomycin (28.6mm). Parallel to in vitro findings, the mixture was most effective against the pathogen on cv. Gala (66.03%). Findings show that the use of mixture of beneficial microorganisms with individual antagonistic properties against the pathogen can be an effective strategy as a natural alternative to agrochemicals in the scope of good agriculture practices.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
M.S. YADAV ◽  
AMRENDER KUMAR ◽  
C. CHATTOPADHYAY ◽  
D.K. YADAVA

Alternaria blight [Alternaria brassicae (Berk.) Sacc.] is one of the most widespread and harmful maladies of rapeseed-mustard, causing yield loss up to 47 per cent. Meteorological parameters especially temperature, relative humidity and bright sunshine hours play major role in the development of Alternaria blight disease. Infection by the pathogen is highly influenced by meteorological conditions. A well-tested model based on meteorological variables is an efficient tool for forewarning this disease. Epidemiology of Alternaria blight of brassicas was investigated based on long term data during 2003-2018 crop seasons on the disease severity and meteorological variables, which was validated with data for two subsequent years. During this study, meteorological variable-based regression model of forewarning was developed for maximum severity (%) of Alternaria blight on leaves and pods for three locations viz., New Delhi, Hisar (Haryana) and Mohanpur (West Bengal)] in India. Validation of the forewarning models for maximum severity (%) of Alternaria blight proved the efficiency of the targeted forecasts.


2021 ◽  
Vol 27 (4) ◽  
pp. 172-179
Author(s):  
Jung-Wook Yang ◽  
Joo-Yeon Kim ◽  
Mi-Rang Lee ◽  
In-Jeong Kang ◽  
Jung- Hyun Jeong ◽  
...  

This study aimed to assess the disease incidence and distribution of toxigenic in Korean triticale. The pathogen of triticale that cause Fusarium head blight were isolated from five different triticale cultivars that cultivated in Suwon Korea at 2021 year. The 72 candidate were classified as a Fusarium asiaticum by morphology analysis and by ITS1, TEF-1α gene sequence analysis. And the results of pathogenicity with 72 isolates on seedling triticale, 71 isolates were showed disease symptom. Also, seven out of 71 Fusarium isolates were inoculated on the wheat, to test the pathogenicity on the different host. The results showed more low pathogenicity on the wheat than triticale. The results of analysis of toxin type with 72 isolates, 64.6% isolates were produced nivalenol type toxin and other 4.6% and 30.8% isolates were produce 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol, respectively. To select fungicide for control, the 72 Fusarium isolates were cultivated on the media that containing four kinds fungicide. The captan, hexaconazole, and difenoconazole·propiconazole treated Fusarium isolates were not showed resistance response against each fungicide. However, six isolates out of 72 isolates, showed resistance response to fludioxonil. This study is first report that F. asiaticum causes Fusarium head blight disease of triticale in Korea.


2021 ◽  
Vol 18 ◽  
Author(s):  
Jyoti Gaba ◽  
Sunita Sharma ◽  
Harleen Kaur ◽  
Pardeep Kaur

Background: Thymol is a bioactive compound having many pharmacological activities. Objective: The present study was carried out to evaluate the fungi toxic effects of thymol and derivatives against phytopathogenic fungi of maize. Method: Thymol was derivatized to get formylated thymol, Mannich bases, and imine derivatives. All the synthesized thymol derivatives were characterized by their physical and spectral properties. Synthesized thymol derivatives were screened for their in vitro antifungal effects using poisoned food technique against three maize pathogenic fungi namely Fusarium moniliforme, Rhizoctonia solani and Dreschlera maydis. Results: Thymol and formylated thymol showed promising results for control of D. maydis with ED50 values less than standard carbendazim and comparable to standard mancozeb. These two compounds were further evaluated for control of D. maydis causative maydis leaf blight disease on maize plants grown in the field during the Kharif season (June to October) 2018. Conclusion: Thymol exhibited significant control of maydis leaf blight disease of maize and emerged as a potential alternative to synthetic fungicides used in cereal crops.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Alfonso Gonzalo De la Rubia ◽  
María De Castro ◽  
Inés Medina-Lozano ◽  
Penélope García-Angulo

Halo blight disease of beans (Phaseolus vulgaris L.), caused by the bacterium Pseudomonas syringae pv. phaseolicola (Pph), is responsible for severe losses in crop production worldwide. As the current agronomic techniques used are not effective, it is necessary to search for new ones which may prevent disease in common bean. In this study, we challenged four plant-based preparations (PBPs), with no other agronomic uses, as they come from industrial waste (grapevine pomace (RG) and hop residue (RH)) or wild plants (Urtica dioica (U) and Equisetum sp. (E)), to be used as immune defense elicitors against Pph in common bean. After studying their inhibitory effect against Pph growth by bioassays, the two most effective PBPs (RG and U) were applied in common bean plants. By measuring the total H2O2, lipid peroxidation, and antioxidant enzymatic activities, as well as the expression of six defense-related genes—PR1, WRKY33, MAPKK, RIN4, and PAL1, it was observed that U-PBP application involved a signaling redox process and the overexpression of all genes, mostly PR1. First infection trials in vitro suggested that the application of U-PBP involved protection against Pph. The elicitation of bean defense with U-PBP involved a decrease in some yield parameters, but without affecting the final production. All these findings suggest a future use of U-PBP to diminish halo blight disease.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Hana Dufková ◽  
Miroslav Berka ◽  
Marie Greplová ◽  
Šarlota Shejbalová ◽  
Romana Hampejsová ◽  
...  

Wild Solanum accessions are a treasured source of resistance against pathogens, including oomycete Phytophthora infestans, causing late blight disease. Here, Solanum pinnatisectum, Solanum tuberosum, and the somatic hybrid between these two lines were analyzed, representing resistant, susceptible, and moderately resistant genotypes, respectively. Proteome and metabolome analyses showed that the infection had the highest impact on leaves of the resistant plant and indicated, among others, an extensive remodeling of the leaf lipidome. The lipidome profiling confirmed an accumulation of glycerolipids, a depletion in the total pool of glycerophospholipids, and showed considerable differences between the lipidome composition of resistant and susceptible genotypes. The analysis of putative resistance markers pinpointed more than 100 molecules that positively correlated with resistance including phenolics and cysteamine, a compound with known antimicrobial activity. Putative resistance protein markers were targeted in an additional 12 genotypes with contrasting resistance to P. infestans. At least 27 proteins showed a negative correlation with the susceptibility including HSP70-2, endochitinase B, WPP domain-containing protein, and cyclase 3. In summary, these findings provide insights into molecular mechanisms of resistance against P. infestans and present novel targets for selective breeding.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Bin Wang ◽  
Yongyan Zhang ◽  
Jiapeng Liu ◽  
Ou Sheng ◽  
Fan Liu ◽  
...  

A leaf blight disease with an incidence level of about 50% was found on Robusta banana in Guangdong province of China in September 2020. The early symptom appeared as pale gray to black brown, irregular, small, necrotic lesions mainly on the top 3–5 leaves. Severely infected leaves were withered and necrotic. Two representative fungus strains, strain L1 and strain L2, were isolated from affected banana leaves, and morphological and molecular identification analysis confirmed that the two fungi were both Alternaria jacinthicola. Many Alternaria species have been reported to cause wilting, decay, leaf blight and leaf spots on plants and lead to serious economic losses in their production, including A. alternata, causing leaf blight and leaf sport diseases on banana. The Koch’s postulates of A. jacinthicola causing the leaf blight disease was further fulfilled, which confirmed that it is the causal agent of this disease. To our knowledge, this is the first report of A. jacinthicola causing leaf blight on banana in China.


Sign in / Sign up

Export Citation Format

Share Document