scholarly journals Identification of barley accessions from the VIR collection carrying the mlo11(cnv2) powdery mildew resistance allele

2021 ◽  
Vol 4 (3) ◽  
pp. 37-44
Author(s):  
R. A. Abdullaev ◽  
N. V. Alpatieva ◽  
T. V. Lebedeva ◽  
O. N. Kovaleva ◽  
E. E. Radchenko ◽  
...  

Background. The search for barley (Hordeum vulgare L.) genotypes that carry effective genes for resistance to powdery mildew agent Blumeria graminis f. sp. hordei is a present-day issue for Russian plant breeding. The mlo11 allele that confers long-term protection of barley against the pathogen is rarely found among the varieties, approved for cultivation in the territory of Russia. There is no information on the occurrence among Russian varieties of another effective allele, mlo11 (cnv2), therefore, the search for its source is a current necessity. Materials and methods. Seven barley accessions from Ethiopia and 7 accessions from Japan have been tested for resistance to the northwestern population of the powdery mildew agent in the field and in laboratory conditions. To identify of the Mlo gene alleles, nucleotide sequences of the Stowaway-MITE (Miniature Inverted-repeat Transposable Elements) and the adjacent promoter fragments were determined. Results. Phytopathological tests in the field and greenhouse conditions, as well as molecular markers were used to study 14 barley accessions from Ethiopia and Japan. According to the preliminary tests, plants were resistant to powdery mildew. The highly effective allele of powdery mildew resistance mlo11 (cnv2) was for the first time identified in four barley accessions from Ethiopia, k-20087, k-20523, k-20524 and k-28126. Under field conditions, adult plants were resistant, and in the greenhouse they were moderately damaged by powdery mildew (1-2 points). The disease symptoms were similar to those described for the sample Eth295, a carrier of the mlo11(cnv2) allele variant: single pustules and the absence of necrotic spots on the leaves. The fragments of Stowaway-MITE and adjacent Mlo 5' promoter sequences were amplified in all 14 accessions. The amplicons were cloned and sequenced. The unique marker SNPs within the MITE and Mlo 5’ promoter sequences, i.e. the substitutions of cytosine by thymine in positions 262 and 452, were found only in k-20087, k-20523, k-20524 and k-28126. These accessions belong to different botanical varieties and differ from each other in a number of morphological features, i.e. they are not duplicates. Conclusions. The genotypes selected as a result of the study can serve as a source of the mlo11(cnv2) allele in breeding powdery mildew-resistant barley varieties.

2009 ◽  
Vol 35 (4) ◽  
pp. 233-236
Author(s):  
S. D. Knyazev ◽  
A. V. Nikolaev ◽  
A. Yu. Andrianova

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1852
Author(s):  
Sylwia Okoń ◽  
Magdalena Cieplak ◽  
Adam Kuzdraliński ◽  
Tomasz Ociepa

Fungal cereal pathogens, including Blumeria graminis f.sp. avenae, have the ability to adapt to specific conditions, which in turn leads to overcoming host resistance. An important aspect is the standardized way of characterizing the races and pathotypes of the pathogen. In the presented work, for the first time it was proposed to use a unified letter code that allows describing the pathotypes of B. graminis f.sp. avenae. The set of 14 oat genotypes were used as a differential set. This set included genotypes having so far described powdery mildew resistance genes Pm1–Pm11, and two genotypes (A. sterilis and A. strigosa) with effective sources of resistance to Bga. Based on the analysis of 160 Bga isolates collected in 2016–2019 from 4 locations in Poland, the most numerous was the TBBB pathotype, represented by 30% of the tested isolates. It was present in all analyzed populations. Subsequently, 8.1% and 6.3% of the isolates represented the TBCB and RBBB pathotypes, respectively.


Author(s):  
O. D. Golyaeva ◽  
O. V. Kurashev ◽  
S. D. Knyazev ◽  
А. Yu. Bakhotskaya

The main goal of the scientific institution was and remains to improve the assortment of fruit and berry crops for the development of domestic horticulture. Black currant breeding at VNIISPK was started by A.F Tamarova and continued by the doctor of agricultural Sciences T.P.Ogoltsova and doctor of agricultural Sciences S.D. Knyazev. A long-term breeding program has been developed. The main goals of the program are to create black currant cultivars with continuous resistance to diseases, first of all powdery mildew, as wells resistance to pests, i.e. bud mite. As a result of the long-term work, over 40 black currant cultivars have been developed, 14 of them are zoned. Red currant breeding was led by the candidate of agricultural Sciences L.V. Bayanova; since 2001 the work has been continued by the candidate of agricultural Sciences O.D. Golyaeva. ‘Heinemanns Rote Spӓtlese’, the descendant of R. multiflorum Kit., was involved in the red currant breeding for the first time in Russia. On its genetic basis, a series of late maturing cultivars with long and dense racemes was created. At the Institute, in total 21cultivars of red currants have been developed, 13 of them are zoned. At present, red currant cultivars make up 25.5% of the zoned assortment in Russia. The first research on gooseberries was stated by V.P. Semakin and A.F Tamarova; since 1992 the systematic gooseberry breeding has been carried out by the candidate of agricultural Sciences O.V. Kurashev. On the basis of Grossularia robusta, we have created gooseberry forms that are resistant to powdery mildew and leaf spots. These forms are highly productive, weakly thorned, having bush habit suitable for mechanized harvest. The result of breeding activities was the transfer of 6 gooseberry cultivars to State agricultural testing: ‘Solnechny Zaychik’, ‘Nekrasovsky’, ‘Yupiter’, ‘Zemlianichny’, ‘Moryachok’ and ‘Discovery’.


2009 ◽  
Vol 35 (5) ◽  
pp. 761-767 ◽  
Author(s):  
Gen-Qiao LI ◽  
Ti-Lin FANG ◽  
Hong-Tao ZHANG ◽  
Chao-Jie XIE ◽  
Zuo-Min YANG ◽  
...  

2015 ◽  
Vol 41 (4) ◽  
pp. 515 ◽  
Author(s):  
Zhong-Yi WANG ◽  
Hai-Ning FU ◽  
Su-Li SUN ◽  
Can-Xin DUAN ◽  
Xiao-Fei WU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document