scholarly journals Petrophysical characterisation of volcanic ejecta to constrain subsurface lithological heterogeneities: implications for edifice stability at basaltic volcanoes

Volcanica ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 41-66
Author(s):  
Andrea Di Muro ◽  
Fabian Schwarzlmuller ◽  
Ulrich Kueppers ◽  
Michael Heap ◽  
Donald Dingwell
2011 ◽  
Vol 3 (1) ◽  
pp. 411-430 ◽  
Author(s):  
A. Aiuppa ◽  
M. Burton ◽  
P. Allard ◽  
T. Caltabiano ◽  
G. Giudice ◽  
...  

Abstract. We report on the first detection of CO2 flux precursors of the till now unforecastable larger than normal ("major") explosions that intermittently occur at Stromboli volcano (Italy). Automated survey of the crater plume emissions in the period 2006–2010, during which 12 such explosions happened, demonstrate that these events are systematically preceded by a brief phase of increasing CO2/SO2 weight ratio (up to >40) and CO2 flux (>1300 t/d) with respect to the time-averaged values of 3.7 and ~500 t/d typical for standard Stromboli's activity. These signals are best explained by the accumulation of CO2-rich gas at a discontinuity of the plumbing system (decreasing CO2 emission at the surface), followed by increasing gas leakage prior to the explosion. Our observations thus support the recent model of Allard (2010) for a CO2-rich gas trigger of recurrent major explosions at Stromboli, and demonstrate the possibility to forecast these events in advance from geochemical precursors. These observations and conclusions have clear implications for monitoring strategies at other open-vent basaltic volcanoes worldwide.


2001 ◽  
Vol 79 (3) ◽  
pp. 341-361 ◽  
Author(s):  
Stefan Hotes ◽  
Peter Poschlod ◽  
Hiroshige Sakai ◽  
Takashi Inoue

Mires in coastal lowlands in Hokkaido, northern Japan, have repeatedly been affected by flooding events and tephra (aerially transported volcanic ejecta) deposition during their development. Vegetation, hydrology, and stratigraphy of Kiritappu Mire in eastern Hokkaido were investigated along two transects and are discussed in relation to disturbance by mineral deposition. The vegetation pattern showed little relation to past geologic events. Five plant communities, two of which (A and C) could be further divided into subgroups, were distinguished (A, Alnus japonica - Spiraea salicifolia community; B, Sasa chartacea community; C, Myrica gale var. tomentosa - Sphagnum fuscum community; D, Carex lyngbyei community; E, Carex subspathacea - Aster tripolium community). Water levels, pH, electric conductivity, and ionic composition of groundwater and surface water were measured in communities A-C. Mean water levels were similar in communities A and C; in community B, it was lower. The pH was higher in community A than in communities B and C. Ion concentrations were influenced by sea water at some sites. Plant macrofossils and ash contents of 31 cores were analysed. Sedge roots were the dominant peat component, often mixed with remains of Phragmites australis, Sphagnum spp., and Polytrichum juniperinum var. strictum. Ash contents were high, and up to nine different mineral layers consisting of tephra, sand, silt, and clay were detected. In some cases, mineral deposition induced changes in the macrofossil composition of the peat. However, in a greater number of cases, no changes in the macrofossil composition were found at the mineral layers, and most shifts were not related to mineral deposition.Key words: mire, vegetation, hydrology, disturbance, flooding, tephra.


2002 ◽  
Author(s):  
Dennis W. O'Leary ◽  
E.A. Mankinen ◽  
R.J. Blakely ◽  
V.E. Langenheim ◽  
D.A. Ponce

1999 ◽  
Vol 46 (4) ◽  
pp. 230-237
Author(s):  
Kazuhiko JINNAI ◽  
Kunio KIMURA

Sign in / Sign up

Export Citation Format

Share Document