scholarly journals Particle-based modeling and meshless simulation of flows with Smoothed Particle Hydrodynamics

2019 ◽  

<p>Smoothed Particle Hydrodynamics (SPH) is a promising simulation technique in the family of Lagrangian mesh-free methods, especially for flows that undergo large deformations. Particle methods do not require a mesh (grid) for their implementation, in contrast to conventional Computational Fluid Dynamics (CFD) methods. Conventional CFD algorithms have reached a very good level of maturity and the limits of their applicability are now fairly well understood. In this paper we investigate the application of the SPH method in Poiseuille and transient Couette flow along with a free surface flow example. Algorithmically, the method is viewed within the framework of an atomic-scale method, Molecular Dynamics (MD). In this way, we make use of MD codes and computational tools for macroscale systems.</p>

2016 ◽  
Vol 40 (23-24) ◽  
pp. 9821-9834 ◽  
Author(s):  
Mahdiyar Khanpour ◽  
Amir Reza Zarrati ◽  
Morteza Kolahdoozan ◽  
Ahmad Shakibaeinia ◽  
Sadegh Jafarinik

Author(s):  
Jun Imasato ◽  
Yuzuru Sakai

In this study a new computational algorithm to enforce incompressibility in free surface flow analysis using Smoothed Particle Hydrodynamics (SPH) is presented. The method uses two steps. The first step is a fractional step for solving velocity field forward in time without incompressibility. Then the second step is computed to compensate the pressure Poisson equation using the mass constant equation in a particle field. This method is composed of the above two steps and is similar to SMAC (Simplified Marker and Cell) method commonly used in CFD. However in SPH simulation, the introduction of incompressibility of fluid is easily realized using the particle density concept and the boundary of free surface of fluid is also controlled conveniently by the concept. In this study the algorithm is applied to sloshing problems of vessels with fluid. The numerical results using this algorithm show good results in the behaviors of free surface flow and the pressure evaluations at the wall of the vessels.


2012 ◽  
Vol 09 (01) ◽  
pp. 1240001 ◽  
Author(s):  
J. R. SHAO ◽  
M. B. LIU ◽  
X. F. YANG ◽  
L. CHENG

This paper presents an implementation of an improved smoothed particle hydrodynamics (SPH) method for numerical simulation of free-surface flow problems. The presented SPH method involves two major modifications on the traditional SPH method: (1) kernel gradient correction (KGC) and density correction to improve the computational accuracy in particle approximation and (2) RANS turbulence model to capture the inherent physics of flow turbulence. In the simulation, artificial compressibility for modeling incompressible fluid and ghost particles for treating solid boundaries are both applied. The presented SPH has been applied to two dam-breaking problems. We demonstrated that the presented SPH method has very good performance with more accurate flow patterns and pressure field distribution.


2006 ◽  
Vol 18 (S1) ◽  
pp. 433-435
Author(s):  
Hongbing Xiong ◽  
Lihua Chen ◽  
Jianzhong Lin

Sign in / Sign up

Export Citation Format

Share Document