scholarly journals A study of the nematic–isotropic phase transition in liquid crystals by monte carlo simulations of lattice models

1997 ◽  
Vol 1 (2) ◽  
pp. 232-240
Author(s):  
Ja. M. Ilnytskyi
1997 ◽  
Vol 08 (03) ◽  
pp. 547-554 ◽  
Author(s):  
Sigismondo Boschi ◽  
Marco P. Brunelli ◽  
Claudio Zannoni ◽  
Cesare Chiccoli ◽  
Paolo Pasini

The implementation of a Monte Carlo code for simulations of liquid crystal lattice models on the Quadrics massively parallel SIMD supercomputer is described. The use of a Quadrics with 512 processors is proving essential in studying the nematic–isotropic phase transition to an unprecedented level of accuracy using more than 106 particles. Here some tests on the Lebwohl–Lasher model with and without an applied field are presented.


2008 ◽  
Vol 15 (05) ◽  
pp. 605-612 ◽  
Author(s):  
VLADIMIR P. ZHDANOV

In the conventional Avrami–Kolmogorov–Johnson–Mehl model, the reaction or phase transition occurring in the 2D or 3D infinite medium is considered to start and proceed around randomly distributed and/or appearing nucleation centers. The radius of the regions transformed is assumed to linearly increase with time. The Monte Carlo simulations presented, illustrate what may happen if the transformation takes place in nanoparticles. The attention is focused on nucleation on the regular surface, edge and corner sites, and on the dependence of the activation energy for elementary reaction events on the local state of the sites.


Sign in / Sign up

Export Citation Format

Share Document