Liquid Crystal Lattice Models on Quadrics Supercomputers

1997 ◽  
Vol 08 (03) ◽  
pp. 547-554 ◽  
Author(s):  
Sigismondo Boschi ◽  
Marco P. Brunelli ◽  
Claudio Zannoni ◽  
Cesare Chiccoli ◽  
Paolo Pasini

The implementation of a Monte Carlo code for simulations of liquid crystal lattice models on the Quadrics massively parallel SIMD supercomputer is described. The use of a Quadrics with 512 processors is proving essential in studying the nematic–isotropic phase transition to an unprecedented level of accuracy using more than 106 particles. Here some tests on the Lebwohl–Lasher model with and without an applied field are presented.

1992 ◽  
Vol 03 (06) ◽  
pp. 1209-1220 ◽  
Author(s):  
CESARE CHICCOLI ◽  
PAOLO PASINI ◽  
FRANCO SEMERIA ◽  
CLAUDIO ZANNONI

An example of three-dimensional animation of Monte Carlo simulation results of liquid crystal lattice models is presented. Molecular configurations are obtained from Monte Carlo simulations on a VAX cluster and downloaded to a 486 personal computer. Visualization of molecular organizations and of their change at a phase transition is obtained by suitable colour coding of orientations and of other relevant physical information on the personal computer, and recorded on a VHS system using a genlock card. The animation sequences generated have a twofold interest: they are useful for educational purposes and, from a scientific point of view, they provide a tool for exploring a large amount of data and investigating the phenomena under study in a non-numerical way.


Author(s):  
I. Andrade-Silva ◽  
U. Bortolozzo ◽  
C. Castillo-Pinto ◽  
M. G. Clerc ◽  
G. González-Cortés ◽  
...  

Order–disorder phase transitions driven by temperature or light in soft matter materials exhibit complex dissipative structures. Here, we investigate the spatio-temporal phenomena induced by light in a dye-doped nematic liquid crystal layer. Experimentally, for planar anchoring of the nematic layer and high enough input power, photoisomerization processes induce a nematic–isotropic phase transition mediated by interface propagation between the two phases. In the case of a twisted nematic layer and for intermediate input power, the light induces a spatially modulated phase, which exhibits stripe patterns. The pattern originates as an instability mediated by interface propagation between the modulated and the homogeneous nematic states. Theoretically, the phase transition, emergence of stripe patterns and front dynamics are described on the basis of a proposed model for the dopant concentration coupled with the nematic order parameter. Numerical simulations show quite a fair agreement with the experimental observations. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.


2017 ◽  
Vol 131 (4) ◽  
pp. 949-951 ◽  
Author(s):  
K. Csach ◽  
A. Juríková ◽  
J. Miškuf ◽  
N. Tomašovičová ◽  
V. Gdovinová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document