scholarly journals Generating Function Identities for $\zeta(2n+2), \zeta(2n+3)$ via the WZ Method

10.37236/759 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Kh. Hessami Pilehrood ◽  
T. Hessami Pilehrood

Using WZ-pairs we present simpler proofs of Koecher, Leshchiner and Bailey-Borwein-Bradley's identities for generating functions of the sequences $\{\zeta(2n+2)\}_{n\ge 0}$ and $\{\zeta(2n+3)\}_{n\ge 0}.$ By the same method, we give several new representations for these generating functions yielding faster convergent series for values of the Riemann zeta function.

2017 ◽  
Vol 13 (03) ◽  
pp. 705-716 ◽  
Author(s):  
Michael E. Hoffman

For [Formula: see text], let [Formula: see text] be the sum of all multiple zeta values with even arguments whose weight is [Formula: see text] and whose depth is [Formula: see text]. Of course [Formula: see text] is the value [Formula: see text] of the Riemann zeta function at [Formula: see text], and it is well known that [Formula: see text]. Recently Shen and Cai gave formulas for [Formula: see text] and [Formula: see text] in terms of [Formula: see text] and [Formula: see text]. We give two formulas for [Formula: see text], both valid for arbitrary [Formula: see text], one of which generalizes the Shen–Cai results; by comparing the two we obtain a Bernoulli-number identity. We also give explicit generating functions for the numbers [Formula: see text] and for the analogous numbers [Formula: see text] defined using multiple zeta-star values of even arguments.


2021 ◽  
Vol 55 (2) ◽  
pp. 115-123
Author(s):  
R. Frontczak ◽  
T. Goy

The purpose of this paper is to present closed forms for various types of infinite seriesinvolving Fibonacci (Lucas) numbers and the Riemann zeta function at integer arguments.To prove our results, we will apply some conventional arguments and combine the Binet formulasfor these sequences with generating functions involving the Riemann zeta function and some known series evaluations.Among the results derived in this paper, we will establish that $\displaystyle\sum_{k=1}^\infty (\zeta(2k+1)-1) F_{2k} = \frac{1}{2},\quad\sum_{k=1}^\infty (\zeta(2k+1)-1) \frac{L_{2k+1}}{2k+1} = 1-\gamma,$ where $\gamma$ is the familiar Euler-Mascheroni constant.


2019 ◽  
Author(s):  
Sumit Kumar Jha

We derive the following globally convergent series for the Riemann zeta function and the Dirichlet beta function$$\zeta(s)=\frac{1}{2^{s}-2}\sum_{k=0}^{\infty}\frac{1}{2^{2k+1}}\binom{2k+1}{k+1}\sum_{m=0}^{k}\binom{k}{m}\frac{(-1)^{m}}{(m+1)^{s}} \qquad \mbox{(where $s \neq 1+\frac{2\pi i n}{\ln 2}$)},$$$$\beta(s)=\frac{1}{4^{s}}\sum_{k=0}^{\infty}\frac{1}{(k+1)!}\left(\left(\frac{3}{4}\right)^{(k+1)}-\left(\frac{1}{4}\right)^{(k+1)}\right)\sum_{m=0}^{k}\binom{k}{m}\frac{(-1)^{m}}{(m+1)^{s}}$$using a globally convergent series for the polylogarithm function, and integrals representing the Riemann zeta function and the Dirichlet beta function. To the best of our knowledge, these series representations are new. Additionally, we give another proof of Hasse's series representation for the Riemann zeta function.


1980 ◽  
Vol Volume 3 ◽  
Author(s):  
K Ramachandra

International audience This is a sequel (Part II) to an earlier article with the same title. There are reasons to expect that the estimates proved in Part I without the factor $(\log\log H)^{-C}$ represent the real truth, and this is indeed proved in part II on the assumption that in the first estimate $2k$ is an integer. %This is of great interest, for little has been known on the mean value of $\vert\zeta(\frac{1}{2}+it)\vert^k$ for odd $k$, say $k=1$; for even $k$, see the book by E. C. Titchmarsh [The theory of the Riemann zeta function, Clarendon Press, Oxford, 1951, Theorem 7.19]. The proofs are based on applications of classical function-theoretic theorems, together with mean value theorems for Dirichlet polynomials or series. %In the case of the zeta function, the principle is to write $\vert\zeta(s)\vert^k=\vert\zeta(s)^{k/2}\vert^2$, where $\zeta(s)^{k/2}$ is related to a rapidly convergent series which is essentially a partial sum of the Dirichlet series of $\zeta(s)^{k/2}$, convergent in the half-plane $\sigma>1$.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


Sign in / Sign up

Export Citation Format

Share Document