Magnesium Nitrate

Keyword(s):  
2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Kavipriya K C ◽  
Sudha A P ◽  
Sujatha K ◽  
Sowmya Lakshmi K

The interest in miniaturization of particles revealed the hidden applications of metal oxides. The potential applications of the particles may vary when the size of the particle is reduced. One of the alternative routes to the conventional approach is the use of plant extract for the synthesis of metal oxides NPs. In the framework of this study, the ecofriendly MgO nanoparticles were synthesized using Acalypha Indica leaf extract,functioning as reducing and capping agent by co-precipitation method. The predecessor taken here was Magnesium Nitrate. The biologically synthesized MgO NPs were characterized by various techniques like X ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), Scanning electron microscope (SEM) with Energy Dispersive X-ray spectroscopy(EDX) profile and its antibacterial activity is evaluated against causative organisms. XRD studies confirmed the face centered cubic crystalline structure of MgO NPs and the average crystalline size of MgO NPs calculated using Scherer’s formula was found to be 13 nm. FTIR spectrum shows a significant Mg-O vibrational band. Purity, surface morphology and chemical composition of elements were confirmed by SEM with EDX. The SEM result shows the fine spherical morphology with the grain size range between 43nm to 62nm. Antimicrobial assay of MgO NPs was examined against gram positive and negative bacteria. Appreciated activity was observed on the Staphylococcus aureus bacterial species. In general, the renewed attempt of this facile approach gave the optimum results of multifunctional MgO NPs.


Author(s):  
Gage P. Ashton ◽  
Edward L. Charsley ◽  
Lindsay P. Harding ◽  
Gareth M. B. Parkes

AbstractA simultaneous DSC–thermomicroscopy system (DSC450 Linkam Scientific) was applied to the study of phase transitions in rubidium nitrate and silver iodide, the oxidation of polyethylene, the thermal degradation of polylactic acid and magnesium nitrate hexahydrate, and the reversible transitions in thermochromic inks. The results demonstrated the benefits of obtaining simultaneous optical data, both images and light intensity measurements, with DSC, particularly in the interpretation of complex processes and the detection of events with small changes in enthalpy.


The specific heats of three paramagnetic salts, neodymium magnesium nitrate, manganous ammonium sulphate and ferric ammonium alum, have been measured at temperatures below 1°K using the method of γ -ray heating. The temperature measurements were made in the first instance in terms of the magnetic susceptibilities of the salts, the relation of the susceptibility to the absolute temperature having been determined for each salt in earlier experiments. The γ -ray heatings gave the specific heat in arbitrary units. The absolute values of the specific heats were found by extrapolating the results of paramagnetic relaxation measurements at higher temperatures. The measured specific heat of neodymium magnesium nitrate is compared with the value calculated from paramagnetic resonance data, and good agreement is found.


2010 ◽  
Vol 75 (1) ◽  
pp. 113-128 ◽  
Author(s):  
Simona Murko ◽  
Radmila Milacic ◽  
Marjan Veber ◽  
Janez Scancar

The applicability of nitric acid, palladium nitrate and a mixture of palladium and magnesium nitrate as matrix modifiers was estimated for the accurate and reproducible determination of cadmium (Cd), lead (Pb) and arsenic (As) in sediments of the Sava River by electrothermal atomic absorption spectrometry, ETAAS. Decomposition of the samples was done in a closed vessel microwave-assisted digestion system using nitric, hydrochloric and hydrofluoric acids, followed by the addition of boric acid to convert the fluorides into soluble complexes. The parameters for the determination of Cd, Pb and As in sediments were optimized for each individual element and for each matrix modifier. In addition, two sediment reference materials were also analyzed. In determination of Cd and Pb, nitric acid was found to be the most appropriate matrix modifier. The accurate and reliable determination of Cd and Pb in sediments was possible also in the presence of boric acid. The use of a mixture of palladium and magnesium nitrate efficiently compensated for matrix effects and enabled the accurate and reliable determination of As in the sediments. Quantification of Cd and As was performed by calibration using acid matched standard solutions, while the standard addition method was applied for the quantification of Pb. The repeatability of the analytical procedure for the determination of Cd, Pb and As in sediments was ?5 % for Cd, ?4 % for Pb and ?2 % for As. The LOD values of the analytical procedure were found to be 0.05 mg/kg for Cd and 0.25 mg/kg for Pb and As, while the LOQ values were 0.16 mg/kg for Cd and 0.83 mg/kg for Pb and As. Finally, Cd, Pb and As were successfully determined in sediments of the Sava River in Slovenia.


Cryogenics ◽  
1973 ◽  
Vol 13 (5) ◽  
pp. 282-286 ◽  
Author(s):  
G.J. Butterworth ◽  
M.P. Bertinat
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document