scholarly journals Determination of Cd, Pb and As in sediments of the Sava river by electrothermal atomic absorption spectrometry

2010 ◽  
Vol 75 (1) ◽  
pp. 113-128 ◽  
Author(s):  
Simona Murko ◽  
Radmila Milacic ◽  
Marjan Veber ◽  
Janez Scancar

The applicability of nitric acid, palladium nitrate and a mixture of palladium and magnesium nitrate as matrix modifiers was estimated for the accurate and reproducible determination of cadmium (Cd), lead (Pb) and arsenic (As) in sediments of the Sava River by electrothermal atomic absorption spectrometry, ETAAS. Decomposition of the samples was done in a closed vessel microwave-assisted digestion system using nitric, hydrochloric and hydrofluoric acids, followed by the addition of boric acid to convert the fluorides into soluble complexes. The parameters for the determination of Cd, Pb and As in sediments were optimized for each individual element and for each matrix modifier. In addition, two sediment reference materials were also analyzed. In determination of Cd and Pb, nitric acid was found to be the most appropriate matrix modifier. The accurate and reliable determination of Cd and Pb in sediments was possible also in the presence of boric acid. The use of a mixture of palladium and magnesium nitrate efficiently compensated for matrix effects and enabled the accurate and reliable determination of As in the sediments. Quantification of Cd and As was performed by calibration using acid matched standard solutions, while the standard addition method was applied for the quantification of Pb. The repeatability of the analytical procedure for the determination of Cd, Pb and As in sediments was ?5 % for Cd, ?4 % for Pb and ?2 % for As. The LOD values of the analytical procedure were found to be 0.05 mg/kg for Cd and 0.25 mg/kg for Pb and As, while the LOQ values were 0.16 mg/kg for Cd and 0.83 mg/kg for Pb and As. Finally, Cd, Pb and As were successfully determined in sediments of the Sava River in Slovenia.

2012 ◽  
Vol 56 (4) ◽  
pp. 585-589 ◽  
Author(s):  
Agnieszka Nawrocka ◽  
Józef Szkoda

Abstract Procedure for determination of chromium in biological materials by Zeeman graphite furnace atomic absorption spectrometry method using a Perkin-Elmer spectrometer equipped with hollow-cathode lamp at 357.9 nm was developed. The samples of animal tissues, food, and feed were digested in muffle furnace at 450ºC. The ash was dissolved in 1 N hydrochloric acid and the final solution was diluted in 0.2% nitric acid. Magnesium nitrate (1%) was used as a matrix modifier. The method was validated in terms of basic analytical parameters. The mean recoveries of chromium was 84.4% for muscle, 79.0% for canned meat, and 80.2% for feed, and analytical detection limit was 0.003 μg/g. Certified reference materials were used for analytical quality assurance. The proposed analytical procedure is well adapted for monitoring chromium content in food and feedstuffs. Content of total chromium in the tested samples (animal muscles and liver) was low and was situated in the range of 0.031-0.101 mg/kg (muscles) and 0.047-0.052 mg/kg (liver).


1992 ◽  
Vol 75 (2) ◽  
pp. 354-359 ◽  
Author(s):  
N J . Miller Ihli ◽  
F E Greene

Abstract A method was developed for the determination of chromium in food samples and other biological materials. Samples are dry ashed In a muffle furnace and are analyzed by graphite furnace atomic absorption spectrometry. Magnesium nitrate is used as a matrix modifier, and samples are quantltated by platform atomizatlon and peak area measurements with direct calibration against aqueous standards. The detection limit (based on 3.29 σ) was 5.6 pg, or 0.28 μg/L for a 20 μL injection. The characteristic mass was 3.2 pg. This method was validated by analyzing a range of reference materials and was subsequently used for the analysis of a variety of food samples. A comparison of analytical results obtained from direct calibration and method of additions was made.


2012 ◽  
Vol 66 (3) ◽  
Author(s):  
Jordan Mouhovski ◽  
Albena Detcheva

AbstractNatural fluorite is used for growing CaF2 boules from melt by an improved technique. Chemical treatment of the starting ore decomposes the accessory minerals, thus producing small amounts of the oxides of Si, Al, and Fe insoluble in the melt, whereas the overall content of rare earth elements (REEs) of hundreds of μg g−1, remains unchanged. Analytical techniques and optical measurements provide for assessing the concentration range and trends in the distribution of residual metal impurities along the height of the boules. Solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS) gives good reproducibility for impurities’ distribution within a large concentration range of 0.1–10 μg g−1. The concentrations of Zn and Cu determined were found to vary within the lowest tenths of μg g−1 range in the starting portions of chemically treated fluorspar and a batch of boules produced subsequently. The concentrations of both elements show a decreasing trend towards the top section within the confidential interval, the width of which confirms the definite in homogeneities in their distribution at those concentration levels. The Fe occurs in the boules below the detection limit, while the content of lead diminishes rapidly towards their upper section, probably due to a shorter path in the liquid phase before any vapour phase transition proceeds. A satisfactory correlation is found between the Pb concentration in ng g−1-range and light-absorption peak intensity at 204 nm, the precise determination of which is impeded due to the overlapping bands and the light-scattering effect. Reliable determination of impurities enables optimisation of the basic purification — growing stages for the production of high grade crystals.


Sign in / Sign up

Export Citation Format

Share Document