Deformation and Heating of an Elastoviscoplastic Cylindrical Layer Moving Owing to a Varying Pressure Drop

2018 ◽  
Vol 53 (1) ◽  
pp. 1-11 ◽  
Author(s):  
A. A. Burenin ◽  
L. V. Kovtanyuk ◽  
G. L. Panchenko
Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2045
Author(s):  
Mingfei Mu ◽  
Xinghu Li ◽  
Yong Qiu ◽  
Yang Shi

Increasingly stringent emission regulations have imposed strict requirements on the particulate matter (PM) from gasoline direct injection (GDI) engines, and the gasoline particulate filters (GPFs) are considered one of the most promising devices for meeting these requirement. To reduce the flow resistance of the GPF, a type of nested cylinder and diversion channel plug (NC-DCP) GPF is designed. It is composed of nested foam metal cylinders and annular diversion channel plugs. The pressure drop and its influencing factors were theoretically studied. The results show that the structural parameters, such as the cylindrical layer spacing and the length-to-diameter ratio, and the pressure drop have trade-off relationships. Moreover, the filtration efficiency is analyzed, and the calculation formula is summarized. The internal flow field distribution and its influencing factors are discussed based on a 2-D axisymmetric simulation. The results show that the exhaust velocity affects the flow field uniformity but does not affect the flow field structure. The pressure drop gradually decreases as the number of nested layers increases, and the positive direction is beneficial to reduce the overall pressure drop. Under different velocities, there is an optimal length-to-diameter ratio to minimize the pressure drop, and the simicircular diversion plug greatly improves the flow uniformity index for the internal flow field of the filter element.


2014 ◽  
Vol 24 (3) ◽  
pp. 273-280
Author(s):  
Kyubok Ahn ◽  
Hwan-Seok Choi
Keyword(s):  

2017 ◽  
Author(s):  
C. Y. Nakashima ◽  
S. de Oliveira Jr. ◽  
E. F. Caetano

2017 ◽  
Author(s):  
Alfred C. Mueller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document