scholarly journals Study on a New Gasoline Particulate Filter Structure Based on the Nested Cylinder and Diversion Channel Plug

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2045
Author(s):  
Mingfei Mu ◽  
Xinghu Li ◽  
Yong Qiu ◽  
Yang Shi

Increasingly stringent emission regulations have imposed strict requirements on the particulate matter (PM) from gasoline direct injection (GDI) engines, and the gasoline particulate filters (GPFs) are considered one of the most promising devices for meeting these requirement. To reduce the flow resistance of the GPF, a type of nested cylinder and diversion channel plug (NC-DCP) GPF is designed. It is composed of nested foam metal cylinders and annular diversion channel plugs. The pressure drop and its influencing factors were theoretically studied. The results show that the structural parameters, such as the cylindrical layer spacing and the length-to-diameter ratio, and the pressure drop have trade-off relationships. Moreover, the filtration efficiency is analyzed, and the calculation formula is summarized. The internal flow field distribution and its influencing factors are discussed based on a 2-D axisymmetric simulation. The results show that the exhaust velocity affects the flow field uniformity but does not affect the flow field structure. The pressure drop gradually decreases as the number of nested layers increases, and the positive direction is beneficial to reduce the overall pressure drop. Under different velocities, there is an optimal length-to-diameter ratio to minimize the pressure drop, and the simicircular diversion plug greatly improves the flow uniformity index for the internal flow field of the filter element.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Weitong Li ◽  
Lei Yu ◽  
Jianli Hao ◽  
Mingrui Li

Passive safety system is the core feature of advanced nuclear power plant (NPP). It is a research hotspot to fulfill the function of passive safety system by improving the NPP natural circulation capacity. Considering that the flow behaviors of stopped pump pose a significant effect on natural circulation, both experimental and computational fluid dynamics (CFD) methods were performed to investigate the flow behaviors of a NPP centrifugal pump under natural circulation condition with a low flow rate. Since the pump structure may lead to different flows depending on the flow direction, an experimental loop was set up to measure the pressure drop and loss coefficient of the stopped pump for different flow directions. The experimental results show that the pressure drop of reverse direction is significantly greater than that of forward direction in same Reynolds number. In addition, the loss coefficient changes slightly while the Reynolds number is greater than 8 × 104; however, the coefficients show rapid increase with the decrease in Reynolds number under lower Reynolds number condition. According to the experimental data, an empirical correlation of the pump loss coefficient is obtained. A CFD analysis was also performed to simulate the experiment. The simulation provides a good accuracy with the experimental results. Furthermore, the internal flow field distributions are obtained. It is observed that the interface regions of main components in pump contribute to the most pressure losses. Significant differences are also observed in the flow field between forward and reverse condition. It is noted that the local flows vary with different Reynolds numbers. The study shows that the experimental and CFD methods are beneficial to enhance the understanding of pump internal flow behaviors.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
T. A. Jankowski ◽  
E. N. Schmierer ◽  
F. C. Prenger ◽  
S. P. Ashworth

A simple model is developed here to predict the pressure drop and discharge coefficient for incompressible flow through orifices with length-to-diameter ratio greater than zero (orifice tubes) over wide ranges of Reynolds number. The pressure drop for flow through orifice tubes is represented as two pressure drops in series; namely, a pressure drop for flow through a sharp-edged orifice in series with a pressure drop for developing flow in a straight length of tube. Both of these pressure drop terms are represented in the model using generally accepted correlations and experimental data for developing flows and sharp-edged orifice flow. We show agreement between this simple model and our numerical analysis of laminar orifice flow with length-to-diameter ratio up to 15 and for Reynolds number up to 150. Agreement is also shown between the series pressure drop representation and experimental data over wider ranges of Reynolds number. Not only is the present work useful as a design correlation for equipment relying on flow through orifice tubes but it helps to explain some of the difficulties that previous authors have encountered when comparing experimental observation and available theories.


Author(s):  
Weijia Qian ◽  
Xin Hui ◽  
Chi Zhang ◽  
Quanhong Xu ◽  
Yuzhen Lin ◽  
...  

The internal flow and discharge parameters of a pressure swirl atomizer (PSA) are numerically investigated using a coupled Level-Set (LS)/Volume-of-Fluid (VOF) solver that combines the advantages of LS and algebraic VOF methods by maintaining the mass conservation and the interface sharpness simultaneously. Internal flow velocity profile and discharge parameters including discharge coefficient, film thickness, and spray cone angle are compared between simulation results and the experimental data that are available in the literature. A parametrical study is also performed to investigate the effects of the key geometric parameters of the PSA configuration on the discharge parameters. The geometric parameters studied are the length to diameter ratio of the swirl chamber, the length to diameter ratio of the exit orifice, the swirl chamber diameter to exit orifice diameter ratio, and the swirl chamber convergence angle.


Author(s):  
Eric Savory ◽  
Norman Toy ◽  
Shiki Okamoto ◽  
Yoko Yamanishi

Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


CrystEngComm ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 1657-1662
Author(s):  
Na Zhang ◽  
Yuqing Yin ◽  
Jian Zhang ◽  
Tao Wang ◽  
Siyuan Wang ◽  
...  

Lu2O3 crystals have attracted intense attention due to their great potential in the field of high power solid-state lasers.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Siti Zubaidah Sulaiman ◽  
Rafiziana Md Kasmani ◽  
A. Mustafa

Flame propagation in a closed pipe with diameter 0.1 m and 5.1 m long, as well as length to diameter ratio (L/D) of 51, was studied experimentally. Hydrogen/air, acetylene/air and methane/air with stoichiometric concentration were used to observe the trend of flame propagation throughout the pipe. Experimental work was carried out at operating condition: pressure 1 atm and temperature 273 K. Results showed that all fuels are having a consistent trend of flame propagation in one-half of the total pipe length in which the acceleration is due to the piston-like effect. Beyond the point, fuel reactivity and tulip phenomenon were considered to lead the flame being quenched and decrease the overpressures drastically. The maximum overpressure for all fuels are approximately 1.5, 7, 8.5 barg for methane, hydrogen, and acetylene indicating that acetylene explosion is more severe. 


Sign in / Sign up

Export Citation Format

Share Document