Structural mechanisms of interaction of cyanolcrylates with plant tubulin

2014 ◽  
Vol 48 (1) ◽  
pp. 7-14 ◽  
Author(s):  
A. Yu. Nyporko ◽  
Ya. B. Blume
2021 ◽  
Vol 11 (4) ◽  
pp. 462
Author(s):  
Charles B. Delahunt ◽  
Pedro D. Maia ◽  
J. Nathan Kutz

Most organisms suffer neuronal damage throughout their lives, which can impair performance of core behaviors. Their neural circuits need to maintain function despite injury, which in particular requires preserving key system outputs. In this work, we explore whether and how certain structural and functional neuronal network motifs act as injury mitigation mechanisms. Specifically, we examine how (i) Hebbian learning, (ii) high levels of noise, and (iii) parallel inhibitory and excitatory connections contribute to the robustness of the olfactory system in the Manduca sexta moth. We simulate injuries on a detailed computational model of the moth olfactory network calibrated to data. The injuries are modeled on focal axonal swellings, a ubiquitous form of axonal pathology observed in traumatic brain injuries and other brain disorders. Axonal swellings effectively compromise spike train propagation along the axon, reducing the effective neural firing rate delivered to downstream neurons. All three of the network motifs examined significantly mitigate the effects of injury on readout neurons, either by reducing injury’s impact on readout neuron responses or by restoring these responses to pre-injury levels. These motifs may thus be partially explained by their value as adaptive mechanisms to minimize the functional effects of neural injury. More generally, robustness to injury is a vital design principle to consider when analyzing neural systems.


Biochemistry ◽  
2017 ◽  
Vol 57 (3) ◽  
pp. 267-276 ◽  
Author(s):  
Edward C. Twomey ◽  
Alexander I. Sobolevsky

2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Shohei Yokoo ◽  
Seiya Inoue ◽  
Nana Suzuki ◽  
Naho Amakawa ◽  
Hidenori Matsui ◽  
...  

Isochorismate synthase (ICS) converts chorismate into isochorismate, a precursor of primary and secondary metabolites including salicylic acid (SA). SA plays important roles in responses to stress conditions in plants. Many studies have suggested that the function of plant ICSs is regulated at the transcriptional level. In Arabidopsis thaliana, the expression of AtICS1 is induced by stress conditions in parallel with SA synthesis, and AtICS1 is required for SA synthesis. In contrast, the expression of NtICS is not induced when SA synthesis is activated in tobacco, and it is unlikely to be involved in SA synthesis. Studies on the biochemical properties of plant ICSs are limited, compared with those on transcriptional regulation. We analyzed the biochemical properties of four plant ICSs: AtICS1, NtICS, NbICS from Nicotiana benthamiana, and OsICS from rice. Multiple sequence alignment analysis revealed that their primary structures were well conserved, and predicted key residues for ICS activity were almost completely conserved. However, AtICS1 showed much higher activity than the other ICSs when expressed in Escherichia coli and N. benthamiana leaves. Moreover, the levels of AtICS1 protein expression in N. benthamiana leaves were higher than the other ICSs. Construction and analysis of chimeras between AtICS1 and OsICS revealed that the putative chloroplast transit peptides (TPs) significantly affected the levels of protein accumulation in N. benthamiana leaves. Chimeric and point-mutation analyses revealed that Thr531, Ser537, and Ile550 of AtICS1 are essential for its high activity. These distinct biochemical properties of plant ICSs may suggest different roles in their respective plant species.


FEBS Journal ◽  
2014 ◽  
Vol 282 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Alvin Lu ◽  
Hao Wu

This work is a continuation of a series of works on the study of regularities and structural mechanisms of changes in characteristics of crystallographic texture during cold deformation of plates made of Zr2.5%Nb alloy. Effects of influence of surface cleanliness of the plates on the textural regularities during their rolling were investigated. For this, longitudinal fragments of the tube Æ15.0´1.5 mm² were used, flattened, annealed at 580°C in a vacuum of 1.5...3.0 Pa and rolled along the axis of the original tube with various degrees deformation up to 56%, which is likened to longitudinal rolling of plates. Techniques of maximally uniform straightening of tube fragments were used. An analysis of the results of studies of textural changes during cross rolling of plates, straightened from rings of the same tube and pretreated under similar conditions, is also carried out. To analyze the results, the method of inverse pole figures was used, which, in these studies, is distinguished by the possibility of achieving satisfactory accuracy in calculating the integral characteristics of texture. On this basis, the Kearns textural coefficient was calculated along the normal to the plates’ plane. Corrections were introduced for texture dissimilarity along the thickness of the plates, which is caused by the unbending of the preliminary blanks. Additionally, the analysis of texture distributions was carried out using original techniques. According to the results obtained – as a result of X-ray measuring from the plates’ surface – oscillations of the course of changes in the texture coefficient were revealed. This is associated with an alternating process of relaxation of residual stresses during deformation. It has been established that this effect is initiated from the near-surface regions, is associated with a near-surface impurity, and in some cases can penetrate to a considerable depth of the plates. The twinning nature of such regularities is confirmed and active systems of twins are noted.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Mahel Zeghouf ◽  
Kaheina Aizel ◽  
Valérie Biou ◽  
Dominique Padovani ◽  
Jacqueline Cherfils

Sign in / Sign up

Export Citation Format

Share Document