Long-Term Research on Physical Properties of Soils in the MSU Large Lysimeters: Main Results for the First 60 Years (1961–2021)

2021 ◽  
Vol 76 (3) ◽  
pp. 95-110
Author(s):  
A. B. Umarova ◽  
T. A. Arkhangelskaya ◽  
A. A. Kokoreva ◽  
Z. S. Ezhelev ◽  
N. A. Shnyrev ◽  
...  
Keyword(s):  
Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Kubota KNC-03 is a grade with a combination of high strength and excellent resistance to oxidation. These properties make this alloy suitable for long-term service at temperature up to 1250 deg C (2282 deg F). This datasheet provides information on physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: Ni-676. Producer or source: Kubota Metal Corporation, Fahramet Division. See also Alloy Digest Ni-662, April 2008.


Alloy Digest ◽  
2011 ◽  
Vol 60 (12) ◽  

Abstract Kubota Alloy HD (UNS J93005) is a heat-resisting stainless steel casting alloy suitable for long-term service at temperatures up to 1095 deg C (2000 deg F). The nearest wrought equivalent is type 327. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting and joining. Filing Code: SS-1110. Producer or source: Kubota Metal Corporation, Fahramet Division.


Alloy Digest ◽  
2010 ◽  
Vol 59 (5) ◽  

Abstract Kubota Alloy HC is a heat resisting stainless steel casting suitable for long term service at temperatures up to 1093 deg C (2000 deg F). This alloy can maintain resistance to sulfur bearing environments up to 1093 deg C (2000 deg F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as casting and joining. Filing Code: SS-1065. Producer or source: Kubota Metal Corporation, Fahramet Division.


2003 ◽  
Vol 67 (2) ◽  
pp. 637 ◽  
Author(s):  
Achmad Rachman ◽  
S. H. Anderson ◽  
C. J. Gantzer ◽  
A. L. Thompson

2003 ◽  
Vol 67 (2) ◽  
pp. 637-644 ◽  
Author(s):  
Achmad Rachman ◽  
S. H. Anderson ◽  
C. J. Gantzer ◽  
A. L. Thompson

2019 ◽  
Vol 186 ◽  
pp. 270-279 ◽  
Author(s):  
Tania D. Burgos Hernández ◽  
Brian K. Slater ◽  
Rebecca Tirado Corbalá ◽  
Jared M. Shaffer

2014 ◽  
Vol 38 (4) ◽  
pp. 1281-1292 ◽  
Author(s):  
Luis Alberto Lozano ◽  
Carlos Germán Soracco ◽  
Vicente S. Buda ◽  
Guillermo O. Sarli ◽  
Roberto Raúl Filgueira

The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.


Sign in / Sign up

Export Citation Format

Share Document