resistance to oxidation
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 53)

H-INDEX

27
(FIVE YEARS 2)

Vestnik MGTU ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 396-407
Author(s):  
L. I. Voitsekhovskaya ◽  
Ye. V. Franko ◽  
S. B. Verbytskyi ◽  
Yu. I. Okhrimenko

Mechanically deboned poultry meat is a valuable protein containing raw material widely used for the production of meat products. However, it does not have a high resistance to oxidation; therefore, various antioxidants including those of natural origin are used in its composition. The article provides information on the advisability of using rosemary extract and dihydroquercetin to stabilize lipids and interrupt hydrolytic and chain oxidative processes in mechanically deboned poultry meat. The permissible storage time for mechanically deboned poultry meat using the rosemary extract and dihydroquercetin in a chilled state is 96 hours. Research has been carried out on the oxidative processes of the fatty complex of mechanically deboned poultry meat during the refrigerated storage period. Antioxidants prevent the accumulation of peroxides: in the samples with their use, the peroxide number reaches critical values on 6-7 day of storage, without their use - on 3 day of storage. For all samples, a gradual increase in the acid number has been observed; however, for samples without antioxidants its values reach a critical level on the 4 day of storage, with the use of antioxidants - on the 7 day. The active formation of secondary oxidation products has begun from the second day of storage and reached the limit of permissible values in samples without antioxidants after 3 days of storage. In samples with antioxidants, the thiobarbituric number reaches a critical value on the 6 day. It has also been shown that the use of antioxidants contributes to the preservation of sensorial indicators (colour, odour) improving the quality of products. The efficiency of using the rosemary extract and dihydroquercetin as inhibitors of the oxidation of mechanically deboned poultry meat has been confirmed.


2021 ◽  
Author(s):  
Fionán Davitt ◽  
Kamil Rahme ◽  
Sreyan Raha ◽  
Shane Garvey ◽  
Manuel Gutierrez ◽  
...  

Abstract Tin selenide (SnSe), a highly promising layered material, has been garnering particular interest in recent times due to its significant promise for future energy devices. Herein we report a simple solution phase approach for growing highly crystalline layered SnSe nanoribbons. Polyvinylpyrrolidone (PVP) was used as a templating agent to selectively passivates the (100) and (001) facets of the SnSe nanoribbons resulting in the unique growth of nanoribbons along their b-axis with a defined zigzag edge state along the sidewalls. The SnSe nanoribbons are few layers thick (~ 20 layers), with mean widths of ~40 nm, and achievable length of > 1 m. Nanoribbons could be produced in relatively high quantities (>150 mg) in a single batch experiment. The PVP coating also offer some resistance to oxidation, with removal of the PVP seen to lead to the formation a SnSe/SnOx core shell structure. The use of non-toxic PVP to replace toxic amines that are typically employed for other 1D forms of SnSe is a significant advantage for sustainable and environmentally friendly applications. Heat transport properties of the SnSe nanoribbons, derived from power dependent Raman spectroscopy, demonstrate the potential of SnSe nanoribbons as thermoelectric material.


2021 ◽  
Author(s):  
◽  
Amanda Berger

<p>The ability of nano-sized zero-valent iron (nZVI) to remove environmental contaminants, from heavy metals to polyhalogenated hydrocarbons, has been well established. However, the reactivity of nZVI towards contaminants is hampered due to competing for side reactions with oxygen and water. Sulfidemodified nZVI (S-nZVI) has become a viable option as S-nZVI has been shown to reduce organic compounds such as trichloroethylene faster than nZVI while also maintaining an increased resistance to oxidation by water. The Fulton group has established that nZVI supported on a naturally occurring microsilicate (Microsilica600, or “misi”), from a Rotorua geothermal deposit, is capable of removing nitrates from water. This material, or nZVI@misi, minimises the potential bioaccumulation path that nZVI has, and is easier to handle than unsupported nZVI. This research investigated the effect of sulfidation of nZVI@misi (or S-nZVI@misi) on the reactivity towards the degradation of a variety of different potential contaminants.  S-nZVI@misi was synthesised using sodium thiosulfate for sulfidation. Increasing the concentration of the reagent and sulfidation time from 3 hours to 24 hours resulted in high percentages of sulfur-to-iron (S/Fe) for each material. This increase in S/Fe had a significant impact on the removal of cadmium and chromium as with higher the percentage of S/Fe, the faster the removal of these species occurred. Compared to pristine nZVI@misi, S-nZVI@misi was significantly faster at removing both cadmium and chromium. However, sulfidation of nZVI@misi proved to reduce the rate of 4-nitrophenol reduction and prevent nitrate reduction from occurring. Experimental analysis also showed that cadmium removal was faster with S-nZVI supported by FeOOH-coated microsilica, compared to material supported by un-coated microsilica. Therefore, we have synthesised supported S-nZVI that quickly removes cadmium and chromium from solution compared to standard supported nZVI.</p>


2021 ◽  
Author(s):  
◽  
Amanda Berger

<p>The ability of nano-sized zero-valent iron (nZVI) to remove environmental contaminants, from heavy metals to polyhalogenated hydrocarbons, has been well established. However, the reactivity of nZVI towards contaminants is hampered due to competing for side reactions with oxygen and water. Sulfidemodified nZVI (S-nZVI) has become a viable option as S-nZVI has been shown to reduce organic compounds such as trichloroethylene faster than nZVI while also maintaining an increased resistance to oxidation by water. The Fulton group has established that nZVI supported on a naturally occurring microsilicate (Microsilica600, or “misi”), from a Rotorua geothermal deposit, is capable of removing nitrates from water. This material, or nZVI@misi, minimises the potential bioaccumulation path that nZVI has, and is easier to handle than unsupported nZVI. This research investigated the effect of sulfidation of nZVI@misi (or S-nZVI@misi) on the reactivity towards the degradation of a variety of different potential contaminants.  S-nZVI@misi was synthesised using sodium thiosulfate for sulfidation. Increasing the concentration of the reagent and sulfidation time from 3 hours to 24 hours resulted in high percentages of sulfur-to-iron (S/Fe) for each material. This increase in S/Fe had a significant impact on the removal of cadmium and chromium as with higher the percentage of S/Fe, the faster the removal of these species occurred. Compared to pristine nZVI@misi, S-nZVI@misi was significantly faster at removing both cadmium and chromium. However, sulfidation of nZVI@misi proved to reduce the rate of 4-nitrophenol reduction and prevent nitrate reduction from occurring. Experimental analysis also showed that cadmium removal was faster with S-nZVI supported by FeOOH-coated microsilica, compared to material supported by un-coated microsilica. Therefore, we have synthesised supported S-nZVI that quickly removes cadmium and chromium from solution compared to standard supported nZVI.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260182
Author(s):  
Massinissa Faci ◽  
Malika Douzane ◽  
Mariem Hedjal ◽  
Mohamed Seghir Daas ◽  
Laëtitia Fougere ◽  
...  

Wild varieties in nature are known to be better adapted to climate change and more resistant to arid conditions common in some regions of the world. Oil samples of two cultivated varieties, Chemlal and Lemli, and one sylvestris variety were collected at four different harvesting periods in the semi-arid region of Bouira, Algeria. The aim of this study was to determine the influence of the genetic and maturity factors on the quality indices (acidity, peroxides value, and the parameters K232, K270), fatty acids profile, phenolic composition, and antioxidant activity of monovarietal olive oils. The study showed that early harvest dates of the fruits produced oils richer in pigments and phenolic compounds, with high antioxidant activity registered in both wild and cultivated varieties. Moreover, all oil samples showed high values of secoiridoids exceeding 60–90% of total biophenols, with higher values found in oleaster oils, which are correlated with high resistance to oxidation attacks. UHPLC-DAD and UHPLC-HRMS analyses showed that the secoiridoids composition is dominated by a profile rich in several isomers of oleuropein and ligstroside aglycons, which in turn represent more than 60% of the total secoiridoids in olive and Oleaster oils. Furthermore, chemometric analysis on the data allowed a better appreciation of the sensitivity of the virgin olive oil composition to the changes in genetic and ripening factors. According to the principal component analysis, phenolic and fatty acid profiles were the most important components contributing to the discrimination between olive oil samples.


Author(s):  
Aleksander Hejna

AbstractBeer is the most popular alcoholic beverage in the world, and its popularity is continuously growing. Currently, global beer production is estimated at around 2 billion hectoliters. Nevertheless, the increasing production capacity implicates the rising issue of generated by-products—brewers’ spent grain, spent hops, spent yeast, and wastewater. They are generated in massive amounts, so having in mind the current pro-ecological trends, it is crucial to look for their utilization methods. Among the possibilities, particular attention should be drawn to polymer technology. This sector can efficiently use different lignocellulosic materials, which could be applied as fillers for polymer composites or sources of particular chemical compounds. Moreover, due to their chemical composition, brewing industry by-products may be used as functional fillers and additives. They could be introduced to enhance the materials’ resistance to oxidation, microbes, or fungi. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the composition and potential applications of the brewing industry by-products in polymer technology. Moreover, potential directions of research based on the possibilities offered by the brewing industry by-products are presented.


Alloy Digest ◽  
2021 ◽  
Vol 70 (7) ◽  

Abstract Nippon Yakin NAS 800 is an austenitic nickel-iron-chromium alloy that exhibits high strength and excellent resistance to oxidation and carburization at high temperatures. It also offers excellent corrosion resistance in many aqueous environments. It is normally employed in service temperatures up to and including 600 °C (1100 °F). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-773. Producer or source: Nippon Yakin Kogyo Co., Ltd.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3691
Author(s):  
Francesca Gamna ◽  
Silvia Spriano

Vitamin E is a common compound used for tocopherols and tocotrienols (α, β, ϒ, δ); it is the component of many natural products of both plant and animal origin. Thanks to its powerful antioxidant capacity, vitamin E has been very successful in hip and knee arthroplasty, used to confer resistance to oxidation to irradiated UHMWPE. The positive results of these studies have made vitamin E an important object of research in the biomedical field, highlighting other important properties, such as anti-bacterial, -inflammatory, and -cancer activities. In fact, there is an extensive literature dealing with vitamin E in different kinds of material processing, drug delivery, and development of surface coatings. Vitamin E is widely discussed in the literature, and it is possible to find many reviews that discuss the biological role of vitamin E and its applications in food packaging and cosmetics. However, to date, there is not a review that discusses the biomedical applications of vitamin E and that points to the methods used to detect it within a solid. This review specifically aims to compile research about new biomedical applications of vitamin E carried out in the last 20 years, with the intention of providing an overview of the methodologies used to combine it with implantable biomaterials, as well as to detect and characterize it within these materials.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.


Sign in / Sign up

Export Citation Format

Share Document