scholarly journals Stabilization of soil hydraulic properties under a long term no-till system

2014 ◽  
Vol 38 (4) ◽  
pp. 1281-1292 ◽  
Author(s):  
Luis Alberto Lozano ◽  
Carlos Germán Soracco ◽  
Vicente S. Buda ◽  
Guillermo O. Sarli ◽  
Roberto Raúl Filgueira

The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.

2021 ◽  
Author(s):  
Martin Zanutel ◽  
Sarah Garré ◽  
Charles Bielders

<p>In the context of global soil degradation, biochar is being promoted as a potential solution to improve soil quality, besides its carbon sequestration potential. Burying biochar in soils is known to effect soil physical quality in the short-term (<5 years), and the intensity of these effects depends on soil texture. However, the long-term effects of biochar remain largely unknown yet and are important to quantify given biochar’s persistency in soils. The objective of this study was therefore to assess the long-term effect of biochar on soil physical properties as a function of soil texture and biochar concentration.  For this purpose, soil physical properties (particle density, bulk density, porosity, water retention and hydraulic conductivity curves) were measured in the topsoil of three fields with former kiln sites containing charcoal more than 150 years old in Wallonia (southern Belgium).  The fields had a silt loam, loam and sandy loam texture.  Samples were collected along 3 transects in each field, from the center of the kiln sites outwards. </p><p>Particle density and bulk density slightly decreased as a function of charcoal content. Because particle density and bulk density were affected to a similar extent by charcoal content, total porosity was not affected by the presence of century-old charcoal. Regarding the soil water retention curve, charcoal affected mostly water content in the mesopore range. This effect was strongest for the sandy loam. On the other hand, the presence of century-old charcoal increased significantly the hydraulic conductivity at pF between 1.5 and 2 for the silt loam, while no effect of charcoal was observed for the loamy soil.  The study highlights a limited effect of century-old charcoal on the pore size distribution (at constant porosity) and on the resulting soil physical properties for the range of soils and charcoal concentrations investigated here.  Further research may be needed to confirm the observed trends over a wider range of soil types. </p>


2018 ◽  
Vol 98 (3) ◽  
pp. 421-435 ◽  
Author(s):  
J.J. Miller ◽  
B.W. Beasley ◽  
C.F. Drury ◽  
F.J. Larney ◽  
X. Hao ◽  
...  

Long-term application of feedlot manure to cropland may change the physical properties of soils. We measured selected soil (surface) physical properties of a Dark Brown Chernozemic clay loam where different amendments were annually applied for 15 (2013), 16 (2014), and 17 (2015) yr. The treatments were stockpiled (SM) or composted (CM) manure with either straw (ST) or wood-chip (WD) bedding applied at three rates (13, 39, and 77 Mg ha−1) and an unamended control. The effect of selected or all treatments on selected properties was determined in 2013–2015. These properties included field-saturated (Kfs) and near-saturated hydraulic conductivity or K(ψ), bulk density (BD), volumetric water content, soil temperature, soil thermal properties, and wet aggregate stability. The hypotheses that selected soil physical properties would improve more for treatments with greater total carbon in the amendments (SM > CM, WD > ST) was rejected. The exceptions were significantly (P ≤ 0.05) lower soil BD for SM than CM and WD than ST for certain dates, and lower soil thermal conductivity for WD than ST. Most soil physical properties generally had no response to 15–17 yr of annual applications of these feedlot amendments, but a few showed a positive response.


2020 ◽  
Author(s):  
Mahyar Naseri ◽  
Sascha C. Iden ◽  
Wolfgang Durner

<p>Stony soils are soils that contain a high amount of stones and are widespread all over the world.  The effective soil hydraulic properties (SHP), i.e. the water retention curve (WRC) and the hydraulic conductivity curve (HCC) are influenced by the presence of stones in the soil. This influence is normally neglected in vadose zone modeling due to the considerable measurement challenges in stony soils. The available data on the effect of stones on SHP is scarce and there is not a systematic modeling approach to obtain the effective SHP in stony soils. Most of the past studies are limited to the effect of stones on the WRC and saturated hydraulic conductivity and low and medium stone contents (up to 40 % v/v). We investigated the effect of stone content on the effective SHP of stony soils through a series of evaporation experiments. Two soil materials a) sandy loam and b) silt loam as background soils were packed with different volumetric contents (0, 10, 30 and 60 %) of medium stones were in containers with a volume of 5060 cm<sup>3</sup>. Volumetric stone contents were chosen in a way to present stone-free, moderately stony and highly stony soils. All of the experiments were carried out in two replicate packings with an almost identical bulk density. Packed samples were saturated with water from the bottom and subjected to evaporation in a climate-controlled room. During the evaporation experiments, the pressure head and soil temperature were continuously monitored and the water loss from the soil columns was measured with a balance. The dewpoint method provided additional data on the WRC in the dry soil. The resulting data were evaluated by inverse modeling with the Richards equation to identify effective SHP and to analyze the effect of stone content on the evaporation rate, soil temperature, the effective WRC and the effective HCC. The applied methodology was successful in identifying effective SHP with high precision over the full moisture range. The results reveal a quicker transition from stage I to stage II of evaporation in highly stony soils. Evaporation rate reduces with the increase of the volumetric stone content. The existence of a high amount of stone content shorten stage II of evaporation driven by the vapor diffusion through the restricted soil evaporative surface.</p>


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 332 ◽  
Author(s):  
Johannes Lund Jensen ◽  
Per Schjønning ◽  
Bent T. Christensen ◽  
Lars Juhl Munkholm

Nutrient management affects not only crop productivity and environmental quality, but also soil physical properties related to soil tilth. Previous studies on soil physical properties have focussed on effects of fertiliser type, whereas the effect of fertiliser rate has been neglected. We examined the impact of no fertilisation (UNF) and different rates of mineral fertiliser (½NPK and 1NPK) and animal manure (1½AM) on an ensemble of soil physical characteristics, with the amount of fertiliser added at level 1 corresponding to the standard rate of plant nutrients for a given crop. Soil was from the Askov long-term field experiment, initiated in 1894 on a hard-setting sandy loam. We assessed clay dispersibility, wet-stability of aggregates, aggregate strength, bulk soil strength and soil pore characteristics. The soils receiving 1NPK and 1½AM had similar soil physical properties, the only differences being a wider range in the optimum water content for tillage and more plant-available water in the soil amended with 1½AM. Suboptimal fertiliser rates (UNF and ½NPK) increased clay dispersibility, soil cohesion and bulk density, and reduced aggregate stability. The physical properties of soils exposed to suboptimal fertilisation indicate that the level of soil organic matter, including active organic binding and bonding materials, has become critically low due to reduced inputs of crop residues. While long-term suboptimal fertilisation compromises soil physical properties, crop-yield-optimised rates of mineral fertilisers and animal manure appear to sustain several soil physical properties equally well.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 750 ◽  
Author(s):  
Ripendra Awal ◽  
Mohammad Safeeq ◽  
Farhat Abbas ◽  
Samira Fares ◽  
Sanjit K. Deb ◽  
...  

Spatial variability of soil physical and hydrological properties within or among agricultural fields could be intrinsically induced due to geologic and pedologic soil forming factors, but some of the variability may be induced by anthropogenic activities such as tillage practices. No-tillage has been gaining ground as a successful conservation practice, and quantifying spatial variability of soil physical properties induced by no-tillage practices is a prerequisite for making appropriate site-specific agricultural management decisions and/or reformulating some management practices. In particular, there remains very limited information on the spatial variability of soil physical properties under long-term no-tillage corn and tropical soil conditions. Therefore, the main objective of this study was to quantify the spatial variability of some selected soil physical properties (soil surface temperature (ST), volumetric water content (θv), soil resistance (TIP), total porosity (θt), bulk density (ρb), organic carbon, and saturated hydraulic conductivity (Ksat)) using classical and geostatistical methods. The study site was a 2 ha field cropped no-tillage sweet corn for nearly 10 years on Oahu, Hawaii. The field was divided into 10 × 10 and 20 × 20 m grids. Soil samples were collected at each grid for measuring ρb, θt, and soil organic carbon (SOC) in the laboratory following standard methods. Saturated hydraulic conductivity, TIP at 10 and 20 cm depths, soil surface temperature, and θv were also measured. Porosity and ρb have low and low to moderate variability, respectively based on the relative ranking of the magnitude of variability drawn from the coefficient of variation. Variability of the SOC, TIP, and Ksat ranges from moderate to high. Based on the best-fitted semivariogram model for finer grid data, 9.8 m and 142.2 m are the cut off beyond which the measured parameter does not show any spatial correlation for SOC, and TIP at 10 cm depth, respectively. Bulk density shows the highest spatial dependence (range = 226.8 m) among all measured properties. Spatial distribution of the soil properties based on kriging shows a high level of variability even though the sampled field is relatively small.


1989 ◽  
Vol 69 (3) ◽  
pp. 443-449 ◽  
Author(s):  
C. CHANG ◽  
C. W. LINDWALL

This study was conducted to compare the long-term (20 yr) effects of conventional tillage, minimum tillage and no-till on various soil-water related properties within the tilled layer (0–30 and 30–60 mm) and immediately below the tilled layer (90–120 mm) under a spring cereal-summerfallow rotation cropping system. Parameters measured included saturated hydraulic conductivity, saturation percentage, plant-available water-holding capacity, large pore porosity, bulk density, and infiltration rate of the soil. Tillage treatment effects on these soil properties in each of the four sampling periods were not significantly different. The confidence interval test showed some temporal changes in these soil physical properties, of which hydraulic conductivity was the most affected. In the summerfallow field, regardless of the previous cereal crops, the steady infiltration rate was significantly lower in the soil under conventional tillage than with that under no-till. The results indicate that the surface soil structure was most stable under no-till. In the fresh stubble field, the type of cereal crop had an effect on the infiltration rate of the soil. The mean infiltration rate was higher in the summerfallow field than in the fresh stubble field and also was higher in the fresh barley stubble than in the fresh wheat stubble. Except for infiltration rates, there is no significant advantage of one tillage method over the other with respect to the soil physical properties measured in this Brown Chernozemic clay loam soil. Key words: No-till, minimum tillage, hydraulic conductivity, bulk density, infiltration


2014 ◽  
Vol 38 (6) ◽  
pp. 1882-1889
Author(s):  
Caroline Valverde dos Santos ◽  
Renato Levien ◽  
Sérgio Francisco Schwarz ◽  
Michael Mazurana ◽  
Henrique Belmonte Petry ◽  
...  

Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina') under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT), between the wheel tracks (BWT), and in the area under the line projection of the canopy (CLP), with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf) in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT), which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.


2021 ◽  
Author(s):  
Mahyar Naseri ◽  
Sascha C. Iden ◽  
Wolfgang Durner

Abstract. Stony soils that have a considerable amount of rock fragments are widespread around the world. However, experiments to determine effective hydraulic properties of stony soils (SHP), i.e. the water retention curve (WRC) and hydraulic conductivity curve (HCC), are challenging. Installation of measurement devices and sensors in these soils is difficult and the data are less reliable because of high local heterogeneity. Therefore, effective properties of stony soils especially in unsaturated hydraulic conditions are still not well understood. An alternative approach to evaluate the SHP of these systems with internal structural heterogeneity is numerical simulation. We used the Hydrus 2D/3D software to create virtual stony soils in 3D and simulate water flow for different volumetric rock fragment contents, f. Soils with volumetric stone contents from 11 to 37 % were created by placing impermeable spheres in the form of rock fragments in a sandy loam soil. Time series of local pressure heads in various depths, mean water contents and fluxes across the upper boundary were generated in a virtual evaporation experiment. Additionally, a multi-step unit gradient simulation was applied to determine effective values of hydraulic conductivity near saturation up to pF = 2. The generated data were evaluated by inverse modeling, assuming a homogeneous system, and the effective hydraulic properties were identified. The effective properties were compared with predictions from available scaling models of SHP for different volumes of rock fragments. Our results showed that scaling the WRC of the background soil based on only the value of f gives acceptable results in the case of impermeable rock fragments. However, the reduction of conductivity could not be simply scaled by the value of f. Predictions were highly improved by applying the Novák, Maxwell, and GEM models to scale the HCC. The Maxwell model matched the numerically identified HCC best.


Soil Research ◽  
1999 ◽  
Vol 37 (5) ◽  
pp. 891 ◽  
Author(s):  
P. L. Singleton ◽  
B. Addison

A study of the physical condition of 3 soils used for intensive dairy farming in the Waikato Region was undertaken. The study was to determine the existing physical condition of the soil, the possible long-term changes from pugging damage, and the most appropriate measurements and depth for monitoring change in soil physical properties under dairying. Four dairy farms were selected on each of 3 soils (an Allophanic Soil and 2 Gley Soils). On each farm, 3 sites that corresponded to never trodden, usual (‘average’ paddock and pasture condition for the farm), and previously pugged (pugged >18 months ago) pasture histories were sampled. Undisturbed soil cores were collected at 50-mm depth increments to 250 mm for determination of bulk density, total porosity, saturated and unsaturated hydraulic conductivity, proportion of pores >30 and 60 µm, and aggregate size class. Results showed pugging was having a long-term effect on soil physical properties of all 3 soils, including the well-drained Allophanic Soil that rarely pugged. All measurements showed a decline in values for soil properties from never trodden to previously pugged. The greatest changes were in hydraulic conductivity, proportion of pores, and aggregate size (>60 and <20 mm). The most appropriate depth increment for measuring differences between treatments was found to be 50–100 mm. A comparison of previously pugged to never trodden at this depth showed that hydraulic conductivity had decreased by 80%, pore size by 46% (except for Allophanic Soil), and the proportion of aggregates >60 mm in diameter had increased at least 4-fold. Farming practices that minimise pugging damage, such as on/off grazing, need to be encouraged. It is possible that such programs may permit the soil to recover to a physical state similar to never trodden sites.


Soil Research ◽  
1992 ◽  
Vol 30 (5) ◽  
pp. 789 ◽  
Author(s):  
IJ Packer ◽  
GJ Hamilton ◽  
TB Koen

A long-term tillage trial was conducted (1981 to 1987) on loamy textured soils to quantify changes in runoff, soil loss and some soil physical properties due to conservation tillage practices. Two sites were established, one at Cowra on a sandy loam textured soil, and the other at Grenfell on a loamy textured soil. The tillage treatments imposed were direct drilling (DD), reduced tillage (RT) and traditional tillage (TT), with grazing at both sites, and a direct drilling ungrazed (NT) treatment at Cowra only. Runoff and soil loss were measured using a rainfall simulator, and sorptivity (S), saturated hydraulic conductivity (Ksat), bulk density to 40 mm (BD4) and 100 mm (BD10), organic carbon (OC) and water stable aggregates (WSA) were measured annually. Runoff decreased significantly in the minimum soil disturbance treatments (NT and DD) at Cowra. Runoff did not decrease in the stubble incorporation treatments despite a significant increase in OC and WSA. Decreases in runoff were due to the development and maintenance of porosity, particularly macropores. Changes in other soil physical properties were generally not significant owing to temporal variability. The regression relationship between OC and WSA, although significant, had little practical value because of high prediction error. Although improvements in soil physical properties were measured, a period of at least five years of cropping at both sites was required before they became significant and consistent.


Sign in / Sign up

Export Citation Format

Share Document