Stability of Periodic Points of a Diffeomorphism of a Plane in a Homoclinic Orbit

2019 ◽  
Vol 52 (1) ◽  
pp. 30-35
Author(s):  
E. V. Vasileva
1994 ◽  
Vol 101 (4) ◽  
pp. 318 ◽  
Author(s):  
Ralph Walde ◽  
Paula Russo

2010 ◽  
Vol 31 (1) ◽  
pp. 49-75 ◽  
Author(s):  
E. GLASNER ◽  
M. LEMAŃCZYK ◽  
B. WEISS

AbstractWe introduce a functor which associates to every measure-preserving system (X,ℬ,μ,T) a topological system $(C_2(\mu ),\tilde {T})$ defined on the space of twofold couplings of μ, called the topological lens of T. We show that often the topological lens ‘magnifies’ the basic measure dynamical properties of T in terms of the corresponding topological properties of $\tilde {T}$. Some of our main results are as follows: (i) T is weakly mixing if and only if $\tilde {T}$ is topologically transitive (if and only if it is topologically weakly mixing); (ii) T has zero entropy if and only if $\tilde {T}$ has zero topological entropy, and T has positive entropy if and only if $\tilde {T}$ has infinite topological entropy; (iii) for T a K-system, the topological lens is a P-system (i.e. it is topologically transitive and the set of periodic points is dense; such systems are also called chaotic in the sense of Devaney).


2000 ◽  
Vol 24 (3) ◽  
pp. 187-192
Author(s):  
Jie Wang ◽  
Chen Chen

Based on the definition of Lie rotated vector fields in the plane, this paper gives the property of homoclinic orbit as parameter is changed and the singular points are fixed on Lie rotated vector fields. It gives the conditions of yielding limit cycles as well.


2002 ◽  
Vol 75 (6) ◽  
pp. 390-398 ◽  
Author(s):  
Isabelle Fantoni ◽  
Rogelio Lozano
Keyword(s):  

1991 ◽  
Vol 01 (02) ◽  
pp. 339-348 ◽  
Author(s):  
C. MIRA ◽  
J. P. CARCASSÈS ◽  
M. BOSCH ◽  
C. SIMÓ ◽  
J. C. TATJER

The areas considered are related to two different configurations of fold and flip bifurcation curves of maps, centred at a cusp point of a fold curve. This paper is a continuation of an earlier one devoted to parameter plane representation. Now the transition is studied in a thee-dimensional representation by introducing a norm associated with fixed or periodic points. This gives rise to complete information on the map bifurcation structure.


1995 ◽  
Vol 05 (05) ◽  
pp. 1351-1355
Author(s):  
VLADIMIR FEDORENKO

We give a characterization of complex and simple interval maps and circle maps (in the sense of positive or zero topological entropy respectively), formulated in terms of the description of the dynamics of the map on its chain recurrent set. We also describe the behavior of complex maps on their periodic points.


1998 ◽  
Vol 18 (2) ◽  
pp. 471-486 ◽  
Author(s):  
T. B. WARD

We show that for almost every ergodic $S$-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than $\exp(-\frac{1}{2}h_{\rm top})<1$. In the arithmetic case almost every zeta function is irrational.We conjecture that for almost every ergodic $S$-integer dynamical system the radius of convergence of the zeta function is exactly $\exp(-h_{\rm top})<1$ and the zeta function is irrational.In an important geometric case (the $S$-integer systems corresponding to isometric extensions of the full $p$-shift or, more generally, linear algebraic cellular automata on the full $p$-shift) we show that the conjecture holds with the possible exception of at most two primes $p$.Finally, we explicitly describe the structure of $S$-integer dynamical systems as isometric extensions of (quasi-)hyperbolic dynamical systems.


1988 ◽  
Vol 8 (4) ◽  
pp. 523-529 ◽  
Author(s):  
S. G. Dani

AbstractWe show that there exists a subset F of the n-dimensional torus n such that F has Hausdorff dimension n and for any x∈F and any semisimple automorphism σ of n the closure of the σ-orbit of x contains no periodic points.


1977 ◽  
Vol 17 (3) ◽  
pp. 375-389 ◽  
Author(s):  
Walter D. Neumann

It is shown how George D. Birkhoff's proof of the Poincaré Birkhoff theorem can be modified using ideas of H. Poincaré to give a rather precise lower bound on the number of components of the set of periodic points of the annulus. Some open problems related to this theorem are discussed.


Sign in / Sign up

Export Citation Format

Share Document