High-energy phosphate compounds during exercise in human slow-twitch and fast-twitch muscle fibres

1982 ◽  
Vol 42 (6) ◽  
pp. 499-506 ◽  
Author(s):  
S. Rehunen ◽  
H. Naveri ◽  
K. Kuoppasalmi ◽  
M. Harkonen
1985 ◽  
Vol 115 (1) ◽  
pp. 165-177
Author(s):  
M. J. Kushmerick

A description of cellular energetics of muscular contraction is given in terms of the rates and extents of high-energy phosphate splitting during contractile activity, in terms of high-energy phosphate resynthesis by respiration and net anaerobic glycolysis, and in terms of the associated uptake and/or release of H+. These chemical changes have been studied quantitatively by rapid freeze-clamping methods and by 31P-NMR methods. The pattern of chemical changes in a fast-twitch glycolytic muscle is rapid depletion of phosphocreatine and later ATP levels, cellular acidification, and a much slower rate of resynthesis of high-energy phosphate compounds during the recovery period afterwards than occurs in the slow-twitch oxidative muscles. In steady-state contractile activity below the maximal, graded levels of high-energy phosphates and of cellular respiration are achieved in both fast-twitch and slow-twitch muscles. Within the metabolic range up to the maximal aerobic capacity, which differs several-fold for different fibre types, this gradation is mediated by the creatine kinase reaction and phosphocreatine stores. Thus while the amount of enzyme present and the content of phosphocreatine differs among muscles of different types, the same general energetic function is seen to occur in all muscle cells. The creatine kinase reaction is both an energy reservoir and a buffer preventing large swings in the ATP/ADP ratios.


1998 ◽  
Vol 201 (3) ◽  
pp. 375-384 ◽  
Author(s):  
P Wetzel ◽  
G Gros

Isometric single-twitch force and intracellular Ca2+ transients were recorded simultaneously, using fura-2, from slow- and fast-twitch muscle fibres of the rat, mouse and Etruscan shrew Suncus etruscus. In the slow-twitch rat soleus, force half-relaxation time was three times longer than the 50 % decay time of the fura-2 signal. In contrast, in the fast-twitch extensor digitorum longus muscles of all three animals, muscle relaxation preceded Ca2+ decay. It is proposed that this surprising property of fast-twitch muscles is due to their pCa­tension curve, which is shifted to the right compared with that of slow-twitch muscle.


1985 ◽  
Vol 115 (1) ◽  
pp. 307-318
Author(s):  
R. L. Terjung ◽  
G. A. Dudley ◽  
R. A. Meyer

Within working muscle, development of conditions that directly influence exercise performance is dependent on many factors, including: intensity and duration of exercise, type of skeletal muscle fibres recruited, cardiovascular support to the working fibres and the inherent metabolic characteristics of the contracting fibres. In general, it is possible to identify factors that seem to alter exercise performance only at relatively intense exercise conditions. During prolonged moderately intense exercise (e.g. 70–80% maximal oxygen consumption for at least 60–90 min) decline in performance is related to the depletion of glycogen within the working muscle. Although the cause of muscle performance decline during very intense exercise is not known, an extreme acidosis is found, especially in fast-twitch muscle, which could significantly disrupt normal metabolic and contractile processes. During fatigue caused by intense contraction conditions, ATP content decreases (by approx. 50%) and there is a stoichiometric production of IMP and ammonia in fast-twitch muscle. This loss in adenine nucleotide content is dependent on the severity of the contraction conditions relative to the functional aerobic capacity of the muscle fibre, since fast-twitch red (high mitochondria, high blood flow) and fast-twitch white (low mitochondria, low blood flow) muscles respond differently. In contrast, during similarly intense contraction conditions, rat slow-twitch muscle fibres maintain their ATP content and do not produce significant amounts of IMP. Indirect evidence suggests that a similar contrast between fibres occurs in humans during maximal exercise. Thus, there seems to be a fundamental difference between fast- and slow-twitch muscles in the management of their adenine nucleotide contents during intense contraction conditions. Whether this is related to the known differences in the fatigue process between these fibre types is not known.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


Sign in / Sign up

Export Citation Format

Share Document