muscle fiber types
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 34)

H-INDEX

53
(FIVE YEARS 2)

Author(s):  
Bimol Roy ◽  
Shahid Mahmood ◽  
H. L. Bruce

Muscle fiber (MF) characteristics of Longissimus thoracis (LT) muscles from heifer (n = 11) and steer (n = 12) carcasses graded Canada AA (AA, normal, n = 4/sex) or dark-cutting (Canada B4) were examined and related to beef quality. Atypical (AB4, pH < 5.9, n = 4/sex) and typical (TB4, pH > 5.9, n = 3 and 4 for heifers and steers, respectively) dark-cutting carcasses were represented. Muscle fiber type proportions did not differ between AA, AB4 and TB4 muscles, although type I and IIB muscle fiber diameters were greater in TB4 than in AA LT. That AB4 muscle fiber proportions were not different from AA and TB4 muscles suggests that the increased MF diameter of TB4 muscle was due to water retained by muscle proteins at high ultimate pH, as evidenced by decreased cooking loss. Dark-cutting was therefore unrelated to muscle fiber proportions, and increased Type I and IIB diameters in dark cutting LT were likely driven by elevated intramuscular ultimate pH.


2021 ◽  
Vol 22 (22) ◽  
pp. 12378
Author(s):  
Oscar A. Rincón ◽  
Andrés F. Milán ◽  
Juan C. Calderón ◽  
Marco A. Giraldo

Mag-Fluo-4 has revealed differences in the kinetics of the Ca2+ transients of mammalian fiber types (I, IIA, IIX, and IIB). We simulated the changes in [Ca2+] through the sarcomere of these four fiber types, considering classical (troponin –Tn–, parvalbumin –Pv–, adenosine triphosphate –ATP–, sarcoplasmic reticulum Ca2+ pump –SERCA–, and dye) and new (mitochondria –MITO–, Na+/Ca2+ exchanger –NCX–, and store-operated calcium entry –SOCE–) Ca2+ binding sites, during single and tetanic stimulation. We found that during a single twitch, the sarcoplasmic peak [Ca2+] for fibers type IIB and IIX was around 16 µM, and for fibers type I and IIA reached 10–13 µM. The release rate in fibers type I, IIA, IIX, and IIB was 64.8, 153.6, 238.8, and 244.5 µM ms−1, respectively. Both the pattern of change and the peak concentrations of the Ca2+-bound species in the sarcoplasm (Tn, PV, ATP, and dye), the sarcolemma (NCX, SOCE), and the SR (SERCA) showed the order IIB ≥ IIX > IIA > I. The capacity of the NCX was 2.5, 1.3, 0.9, and 0.8% of the capacity of SERCA, for fibers type I, IIA, IIX, and IIB, respectively. MITO peak [Ca2+] ranged from 0.93 to 0.23 µM, in fibers type I and IIB, respectively, while intermediate values were obtained in fibers IIA and IIX. The latter numbers doubled during tetanic stimulation. In conclusion, we presented a comprehensive mathematical model of the excitation–contraction coupling that integrated most classical and novel Ca2+ handling mechanisms, overcoming the limitations of the fast- vs. slow-fibers dichotomy and the use of slow dyes.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
C. Manno ◽  
E. Tammineni ◽  
Y. Oropeza ◽  
L. Figueroa ◽  
E. Rios

This work describes a simple way to identify fiber types in living muscles by fluorescence lifetime imaging microscopy (FLIM). We quantified the mean values of lifetimes derived from a two-exponential fit (τ1 and τ2) in freshly dissected mouse FDB and soleus muscles. While τ1 values did not change between muscles, the distribution of τ2 shifted to higher values in FDB. To understand the origin of this difference, we obtained maps of autofluorescence lifetimes in cryosections of both muscles and paired them with immunofluorescence images of myosin heavy chain isoforms (MHC), which allow identification of fiber types. In soleus, τ2 was 3.1 ns for type I (SEM = 0.009, n = 49), 3.4 ns for type IIA (SEM = 0.01, n = 30), and 3.3 ns for type IIX (SEM = 0.01, n = 21). In FDB muscle, τ2 was 3.17 ns for type I (SEM = 0.04, n = 18), 3.5 ns for type IIA (SEM = 0.03, n = 27), and 3.62 ns for type IIX (SEM = 0.03, n = 22). From the distribution of measures, it follows that an FDB fiber with τ2 &gt;3.3 ns is expected to be of type II, and of type I otherwise. This simple classification method has first- and second-class errors estimated at 0.06 and 0.27, respectively. Studies in progress aim at further elucidating the reasons for the different lifetimes, not just among fiber types but between fibers of the same type in the two muscles. Preliminary results point at differences in both the oxidation-reduction and protein-bound versus free states of flavins as causes for the observed divergence of fluorescence lifetimes. Lifetime maps of autofluorescence therefore constitute a tool to identify fiber type that, being practical, fast, and noninvasive, can be applied in living tissue without compromising other experimental interventions.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2356
Author(s):  
Elena Lilliu ◽  
Stéphane Koenig ◽  
Xaver Koenig ◽  
Maud Frieden

Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2455
Author(s):  
Nidia Valenzuela-Grijalva ◽  
Ismael Jiménez-Estrada ◽  
Silvia Mariscal-Tovar ◽  
Kenia López-García ◽  
Araceli Pinelli-Saavedra ◽  
...  

FA dietary supplementation on the growth performance, carcass traits and histochemical characteristics of the Longissimus thoracis muscle from finishing pigs was investigated. Four hundred and twenty pigs were used in this study, and 105 animals (with five replicate pens and 21 pigs per pen) were assigned to one of four treatments: basal diet (BD) without additives (C−); BD + 10 ppm ractopamine hydrochloride + 0.97% lysine (C+); BD + 25 ppm of FA (FA); and BD + 25 ppm of FA + 0.97% lysine (FA-Lys). Dietary supplementation with FA or ractopamine increased both the average daily gain (14%) and loin muscle area (19%), while fat deposition decreased by 53%, in comparison with C− (p < 0.05). The growth performance of pigs treated with FA was similar to those of ractopamine (p > 0.05). The histochemical analysis showed that FA and C+ treatments induced a shift in muscle fiber types: from fast fibers to intermediate (alkaline ATPase) and from oxidative to glycolytic fibers. Muscle tissues from animals treated with FA or ractopamine had a lower cross-sectional area and a greater number of muscle fibers per area (p < 0.05). Findings regarding growth performance and carcass traits indicate that FA supplementation at 25 ppm without extra-lysine can replace the use of ractopamine as a growth promoter in finishing pigs.


2021 ◽  
Author(s):  
Yongjie Wang ◽  
Tsung Cheng Tsai ◽  
Palika Morse ◽  
Shilei Zhang ◽  
Charles Maxwell ◽  
...  

Abstract The objective of this experiment was to investigate the influence of early exposure to topsoil on the muscle fiber characteristics and transcription related myogenesis, intramuscular fat metabolism, muscle fiber types, and mTOR signaling pathway of weaned pigs. A Total of 180 piglets were separately assigned to No soil, Antibacterial soil, and Normal soil group (each group, n=60), and were fed ad libitum with common antibiotic-free corn-soybean meal diets until day-31. Ten pigs from each group with similar body weight were selected to be slaughtered, and the longissimus dorsi (LD) muscle samples were collected for histological analysis and measurements of genes and proteins expression levels. In the present study, the muscle fiber diameter and the area of Normal soil and Antibacterial soil group were significantly higher than No soil group (P < 0.05). The Normal soil significantly upregulated the gene expression of MyoG compared to No soil and Antibacterial soil groups (P < 0.05). The gene expression of CD36 and CPT-1 of Normal soil group was significantly lower than No soil group (P < 0.05), while HSL expression of Normal soil group was significantly higher than Antibacterial and No soil groups (P < 0.05). The MyHC I of Normal soil group was significantly higher than No soil group (P < 0.05), but the expression MyHC IIa was lower than No soil group (P < 0.05). The protein expression expressed the similar result with gene expression. In addition, the Normal soil significantly increased the AMPK and mTOR phosphorylation compared to No soil and Antibacterial soil groups (P < 0.05). These data suggest that early exposure to topsoil regulates the muscle fiber growth, modulates the expression pattern related to myogenesis, muscle fiber type, intramuscular fat metabolism, and increases the phosphorylation of mTOR and AMPK pathways.


Author(s):  
Y Wang ◽  
Z Feng ◽  
KL Cheng ◽  
J Zhang ◽  
L Xu ◽  
...  

AIS is three-dimensional spinal deformity with unclear etiopathogenesis. LBX1 is so far the only multi-centers validated AIS predisposing gene. The imbalance of posterior paraspinal muscles is an important factor in AIS etiopathogenesis. It is poorly understood how LBX1 contributes to the abnormal paraspinal muscles and onset/progression of AIS. We aimed to evaluate the expression of LBX1 in paraspinal muscles at the concave and convex side in AIS, and whether alternation of LBX1 expression could affect myoblastsactivities and potentially influence muscle-bone interaction via myokines expression. Paraspinal muscles from AIS and age- and curvature-matched congenital scoliosis (CS) patients were collected for fiber types analysis. Biopsies were also subjected to qPCR to validate expression of myogenic markers, selected myokines and LBX1. Human skeletal muscle myoblast (HSMM) was used for LBX1 loss-of-function study in vitro. Muscle fiber types analysis showed type I and type IIX/IIAX fibers proportion were significantly different between AIS concave and convex but not in two sides of CS. LBX1, myogenic markers and one myokine were significantly imbalanced in AIS but not in CS. Loss-of-function study showed knockdown of LBX1 could inhibit myogenic markers expression and myokines as well. This study provides new insight into the association between imbalanced paraspinal muscle and potential muscle-bone crosstalk in AIS patients and the biological function of predisposing gene LBX1. Further investigation with appropriate animal models is warranted to explore if asymmetric expression of LBX1 could result in distinct muscle phenotypes and bone qualities thus affect the progression of spine curvature in AIS.


2021 ◽  
Author(s):  
Yongjie Wang ◽  
Tsung Cheng Tsai ◽  
Palika Morse ◽  
Shilei Zhang ◽  
Charles Maxwell ◽  
...  

Abstract Background: The objective of this experiment was to investigate the influence of early exposure to topsoil on the muscle fiber characteristics and transcription related myogenesis, intramuscular fat metabolism, muscle fiber types, and mTOR signaling pathway of weaned pigs.Methods: A Total of 180 piglets were separately assigned to No soil, Antibacterial soil, and Normal soil group (each group, n=60), and were fed ad libitum with common antibiotic-free corn-soybean meal diets until day-31. Ten pigs from each group with similar body weight were selected to be slaughtered, and the longissimus dorsi (LD) muscle samples were collected for histological analysis and measurements of genes and proteins expression levels.Result: In the present study, the muscle fiber diameter and the area of Normal soil and Antibacterial soil group were significantly higher than No soil group (P < 0.05). The Normal soil significantly upregulated the gene expression of MyoG compared to No soil and Antibacterial soil groups (P < 0.05). The gene expression of CD36 and CPT-1 of Normal soil group was significantly lower than No soil group (P < 0.05), while HSL expression of Normal soil group was significantly higher than Antibacterial and No soil groups (P < 0.05). The MyHC I of Normal soil group was significantly higher than No soil group (P < 0.05), but the expression MyHC IIa was lower than No soil group (P < 0.05). The protein expression expressed the similar result with gene expression. In addition, the Normal soil significantly increased the AMPK and mTOR phosphorylation compared to No soil and Antibacterial soil groups (P < 0.05).Conclusion: These data suggest that early exposure to topsoil regulates the muscle fiber growth, modulates the expression pattern related to myogenesis, muscle fiber type, intramuscular fat metabolism, and increases the phosphorylation of mTOR and AMPK pathways.


Author(s):  
Nejc Umek ◽  
Simon Horvat ◽  
Erika Cvetko

In obesity, accumulation of lipid droplets in skeletal muscle fibers and a shift towards fast muscle fiber types can both contribute to insulin resistance. However, it is not yet clear how intramyocellular lipid accumulation and fiber type changes are associated. Therefore, we investigated to what extent the lipids accumulated in a fiber type-specific manner in the functionally similar fast-, intermediate- and slow‑twitch gastrocnemius, plantaris, and soleus muscles, respectively, in high-fat diet-induced obese 54-week-old female C57BL/6JOlaHsd mice (n=9) compared to control standard-diet-treated lean mice (n=9). A high-fat diet was administered for 26 weeks. Fiber-type specific intramyocellular lipid content analysis and muscle fiber typing were performed using histochemical analysis of lipids with Sudan Black and immunohistochemical analysis of myosin heavy chains on serial sections of skeletal muscles. Compared to the lean mice, the lipid accumulation was most prominent in types 2a and 2x/d fibers (p<0.05) of fast-twitch gastrocnemius and intermediate plantaris muscles in the obese mice, while in slow-twitch soleus muscle, there was no significant lipid accumulation in the obese animals. Furthermore, the slow-twitch soleus muscle of the obese mice with no significant change in muscle fiber diameters exhibited the most pronounced shift towards fast-type myosin heavy chain isoform expression (p<0.05). In contrast, the fast-twitch and intermediate-twitch gastrocnemius and plantaris muscles, respectively, in which the muscle fiber diameters increased (p<0.05), were more resistant toward myosin heavy chain expression changes. In conclusion, we demonstrated both muscle- and fiber-type specificity in intramyocellular lipid accumulation in obese mice, suggesting that in obesity, similar muscle fiber types in different muscles accumulate lipids differentially.


Sign in / Sign up

Export Citation Format

Share Document