Delayed Increase in Blood Pressure Induced by Spontaneously Hypertensive Rat Plasma after High Sodium Intake

1997 ◽  
Vol 6 (3) ◽  
pp. 188-191 ◽  
Author(s):  
Ilkka Tikkanen ◽  
Terttu-Liisa Teäväinen ◽  
Eero Mervaala ◽  
Heikki Karppanen
1982 ◽  
Vol 63 (s8) ◽  
pp. 339s-342s ◽  
Author(s):  
S. R. Winternitz ◽  
J. M. Wyss ◽  
J. R. Meadows ◽  
S. Oparil

1. High sodium intake results in an exacerbation of hypertension accompanied by evidence of increased peripheral sympathetic activity in the young spontaneously hypertensive rat (SHR) of the Okamoto strain. 2. To examine the hypothesis that high sodium intake increases peripheral sympathetic activity via an influence on central noradrenergic pathways involved in cardiovascular regulation, the effect of dietary sodium intake on noradrenaline stores of individual hypothalamic nuclei was examined in young SHR. 3. After 2 weeks of high sodium intake, the noradrenaline content of the anterior and dorsomedial hypothalamic nuclei of SHR was increased when compared with SHR receiving normal sodium intake. Increases in the noradrenaline content of anterior hypothalamic nucleus persisted at 4 weeks. No changes were seen in other regions examined. 4. These observations lend support to the hypothesis that sodium and the sympathetic nervous system have synergistic effects in the pathogenesis of hypertension in the SHR.


1987 ◽  
Vol 252 (3) ◽  
pp. R554-R561 ◽  
Author(s):  
W. N. Henley ◽  
A. Tucker

The mechanism by which chronic, moderate, hypobaric hypoxia attenuates systemic systolic blood pressure (SBP) in the spontaneously hypertensive rat (SHR) was investigated in a three-part study. In experiment 1, 10 wk of hypoxia (3,658 m altitude) commencing in 7-wk-old rats was partially effective in preventing the rise in SBP [hypoxic SHR (SHR-H) 154 mmHg vs. normoxic SHR (SHR-N) 180 mmHg; P less than 0.01]. When hypoxia was initiated in 5-wk-old SHR (experiments 2 and 3), protection against hypertension was nearly complete (experiment 2: SHR-H 122 mmHg vs. SHR-N 175 mmHg; P less than 0.001; experiment 3: 135 vs. 152 mmHg, respectively; P less than 0.05). Elevations in O2 consumption (VO2) and rectal temperature (Tre) in SHR vs. normotensive [Wistar-Kyoto (WKY)] rats provided evidence that the SHR is a hypermetabolic animal. Thyroid hormonal indices suggested that SHR changed from a low to high thyroid status at a time that rapid blood pressure elevation occurred; however, hypoxia did not influence thyroid status. Acute, significant decrements in VO2 and Tre in SHR-H (experiments 2 and 3) accompanied the attenuation of SBP by hypoxia, whereas large decrements in VO2 and SBP did not occur in hypoxic WKY. Timely administration of moderate hypoxia protects against the development of hypertension in the SHR. This protection may relate to a metabolic adaptation made by the hypoxic SHR.


2007 ◽  
Vol 293 (4) ◽  
pp. R1657-R1665 ◽  
Author(s):  
Annie Beauséjour ◽  
Véronique Houde ◽  
Karine Bibeau ◽  
Rébecca Gaudet ◽  
Jean St-Louis ◽  
...  

Sodium supplementation given for 1 wk to nonpregnant rats induces changes that are adequate to maintain renal and circulatory homeostasis as well as arterial blood pressure. However, in pregnant rats, proteinuria, fetal growth restriction, and placental oxidative stress are observed. Moreover, the decrease in blood pressure and expansion of circulatory volume, normally associated with pregnancy, are prevented by high-sodium intake. We hypothesized that, in these pregnant rats, a loss of the balance between prooxidation and antioxidation, particularly in kidneys and heart, disturbs the normal course of pregnancy and leads to manifestations such as gestational hypertension. We thus investigated the presence of oxidative/nitrosative stress in heart and kidneys following high-sodium intake in pregnant rats. Markers of this stress [8-isoprostaglandin F2α (8-iso-PGF2α) and nitrotyrosine], producer of nitric oxide [nitric oxide synthases (NOSs)], and antioxidants [superoxide dismutase (SOD) and catalase] were measured. Then, molecules (Na+-K+-ATPase and aconitase) or process [apoptosis (Bax and Bcl-2), inflammation (monocyte chemoattractant protein-1, connective tissue growth factor, and TNF-α)] susceptible to free radicals was determined. In kidneys from pregnant rats on 1.8% NaCl-water, NOSs, apoptotic index, and nitrotyrosine expression were increased, whereas Na+-K+-ATPase mRNA and activity were decreased. In the left cardiac ventricle of these rats, heightened nitrotyrosine, 8-iso-PGF2α, and catalase activity together with reduced endothelial NOS protein expression and SOD and aconitase activities were observed. These findings suggest that oxidative/nitrosative stress in kidney and left cardiac ventricle destabilizes the normal course of pregnancy and could lead to gestational hypertension.


1994 ◽  
Vol 308 (3) ◽  
pp. 145-151 ◽  
Author(s):  
Yiu-Fai Chen ◽  
Ren-Hui Yang ◽  
Qing-Cheng Meng ◽  
Edward J. Cragoe ◽  
Suzanne Oparil

Sign in / Sign up

Export Citation Format

Share Document