tail artery
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 9)

H-INDEX

36
(FIVE YEARS 1)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262263
Author(s):  
Yoichiro Kitajima ◽  
Nana Sato Hashizume ◽  
Chikako Saiki ◽  
Ryoji Ide ◽  
Toshio Imai

Purpose We examined the cardiorespiratory effect of dexmedetomidine, an α2- adrenoceptor/imidazoline 1 (I1) receptor agonist, in spontaneously breathing adult rats. Methods Male rats (226−301 g, n = 49) under isoflurane anesthesia had their tail vein cannulated for drug administration and their tail artery cannulated for analysis of mean arterial pressure (MAP), pulse rate (PR), and arterial blood gases (PaO2, PaCO2, pH). After recovery, one set of rats received normal saline for control recording and was then divided into three experimental groups, two receiving dexmedetomidine (5 or 50 μg·kg−1) and one receiving normal saline (n = 7 per group). Another set of rats was divided into four groups receiving dexmedetomidine (50 μg·kg−1) followed 5 min later by 0.5 or 1 mg∙kg−1 atipamezole (selective α2-adrenoceptor antagonist) or efaroxan (α2-adrenoceptor/I1 receptor antagonist) (n = 6 or 8 per group). Recordings were performed 15 min after normal saline or dexmedetomidine administration. Results Compared with normal saline, dexmedetomidine (5 and 50 μg·kg−1) decreased respiratory frequency (fR, p = 0.04 and < 0.01, respectively), PR (both p < 0.01), and PaO2 (p = 0.04 and < 0.01), and increased tidal volume (both p = 0.049). Dexmedetomidine at 5 μg·kg−1 did not significantly change minute ventilation (V′E) (p = 0.87) or MAP (p = 0.24), whereas dexmedetomidine at 50 μg·kg−1 significantly decreased V′E (p = 0.03) and increased MAP (p < 0.01). Only dexmedetomidine at 50 μg·kg−1 increased PaCO2 (p < 0.01). Dexmedetomidine (5 and 50 μg·kg−1) significantly increased blood glucose (p < 0.01), and dexmedetomidine at 50 μg·kg−1 increased hemoglobin (p = 0.04). Supplemental atipamezole or efaroxan administration similarly prevented the 50 μg·kg−1 dexmedetomidine-related cardiorespiratory changes. Principal conclusion These results suggest that dexmedetomidine-related hypoventilation and hypertension are observed simultaneously and occur predominantly through activation of α2-adrenoceptors, but not I1 receptors, in spontaneously breathing adult rats.


Author(s):  
Vladimir N. Yartsev

Although vasodilatation evoked by acidosis at normal body temperature is well known, the reports regarding effect of acidosis on the reactivity of the isolated arteries at low temperatures are non-existent. This study tested the hypothesis that the inhibitory effect of acidosis on the neurogenic vasoconstriction may be increased by cooling. Using wire myography, we recorded the neurogenic contraction of the rat tail artery segments to the electrical field stimulation in the absence and in the presence of 0.03-10.0 µmol/L noradrenaline. The experiments were conducted at 37oC or 25oC and pH 7.4 or 6.6 which was decreased by means of CO2. Noradrenaline at concentration of 0.03-0.1 µmol/L significantly potentiated the neurogenic vasoconstriction at 25oC, and the potentiation was not inhibited by acidosis. Contrary to our hypothesis, acidosis at a low temperature did not affect the noradrenaline-induced tone and significantly increased the neurogenic contraction of the artery segments in the absence and presence of noradrenaline. These effects of acidosis were partly dependent on the endothelium and L-type Ca2+ channels activation. The phenomenon described for the first time might be of importance for the reduction in the heat loss by virtue of decrease in the subcutaneous blood flow at low ambient temperatures.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kosuke Kumagai ◽  
Terushige Toyooka ◽  
Yohei Otsuka ◽  
Masahiro Horikawa ◽  
Kentaro Yamada ◽  
...  
Keyword(s):  

2020 ◽  
Vol 8 (24) ◽  
Author(s):  
Ian R. VanAntwerp ◽  
Laura E. Phelps ◽  
Jacob D. Peuler ◽  
Phillip G. Kopf
Keyword(s):  

2020 ◽  
Vol 182 ◽  
pp. 114263
Author(s):  
F. Fusi ◽  
P. Mugnai ◽  
A. Trezza ◽  
O. Spiga ◽  
G. Sgaragli

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
S. Y. Yeon ◽  
S. W. Seto ◽  
G. H. H. Chan ◽  
M. Low ◽  
H. Kiat ◽  
...  

Background. Sailuotong (SLT) is a standardized three-herb formulation consisting of extracts of Panax ginseng, Ginkgo biloba, and Crocus sativus for the treatment of vascular dementia (VaD). Although SLT has been shown to increase cerebral blood flow, the direct effects of SLT on vascular reactivity have not been explored. This study aims to examine the vasodilatory effects of SLT and the underlying mechanisms in rat isolated tail artery. Methods. Male (250–300 g) Wistar Kyoto (WKY) rat tail artery was isolated for isometric tension measurement. The effects of SLT on the influx of calcium through the cell membrane calcium channels were determined in Ca2+-free solution experiments. Results. SLT (0.1–5,000 μg/ml) caused a concentration-dependent relaxation in rat isolated tail artery precontracted by phenylephrine. In the contraction experiments, SLT (500, 1,000, and 5,000 μg/mL) significantly inhibited phenylephrine (0.001 to 10 μM)- and KCl (10–80 mM)-induced contraction, in a concentration-dependent manner. In Ca2+-free solution, SLT (500, 1,000, and 5,000 μg/mL) markedly suppressed Ca2+-induced (0.001–3 mM) vasoconstriction in a concentration-dependent manner in both phenylephrine (10 μM) or KCl (80 mM) stimulated tail arteries. L-type calcium channel blocker nifedipine (10 μM) inhibited PE-induced contraction. Furthermore, SLT significantly reduced phenylephrine-induced transient vasoconstriction in the rat isolated tail artery. Conclusion. SLT induces relaxation of rat isolated tail artery through endothelium-independent mechanisms. The SLT-induced vasodilatation appeared to be jointly meditated by blockages of extracellular Ca2+ influx via receptor-gated and voltage-gated Ca2+ channels and inhibition of the release of Ca2+ from the sarcoplasmic reticulum.


2020 ◽  
Vol 31 (3) ◽  
pp. S195
Author(s):  
K. Yamada ◽  
K. Kumagai ◽  
Y. Jahangiri ◽  
J. Li ◽  
A. Gabr ◽  
...  

2019 ◽  
Vol 858 ◽  
pp. 172498
Author(s):  
José F. Álvarez-Cámara ◽  
Martha B. Ramírez-Rosas ◽  
Grecia J. Medina-Terol ◽  
Diana L. Silva-Velasco ◽  
Andrea Velazco-Paz ◽  
...  
Keyword(s):  

2019 ◽  
Vol 316 (1) ◽  
pp. H89-H105 ◽  
Author(s):  
Somayeh Mojard Kalkhoran ◽  
Sarah Heather Jane Chow ◽  
Jagdeep Singh Walia ◽  
Cynthia Gershome ◽  
Nickolas Saraev ◽  
...  

ATP and norepinephrine (NE) are coreleased from peripheral sympathetic nerve terminals. Whether they are stored in the same vesicles has been debated for decades. Preferential dependence of NE or ATP release on Ca2+ influx through specific voltage-gated Ca2+ channel (Cav2) isoforms suggests that NE and ATP are stored in separate vesicle pools, but simultaneous imaging of NE and ATP containing vesicles within single varicosities has not been reported. We conducted an immunohistochemical study of vesicular monoamine transporter 2 (VMAT2/SLC18A2) and vesicular nucleotide translocase (VNUT/SLC17A9) as markers of vesicles containing NE and ATP in sympathetic nerves of the rat tail artery. A large fraction of varicosities exhibited neighboring, rather than overlapping, VNUT and VMAT2 fluorescent puncta. VMAT2, but not VNUT, colocalized with synaptotagmin 1. Cav2.1, Cav2.2, and Cav2.3 are expressed in nerves in the tunica adventitia. VMAT2 preferentially localized adjacent to Cav2.2 and Cav2.3 rather than Cav2.1. VNUT preferentially localized adjacent to Cav2.3 > Cav2.2 >> Cav2.1. With the use of wire myography, inhibition of field-stimulated vasoconstriction with the Cav2.3 blocker SNX-482 (0.25 µM) mimicked the effects of the P2X inhibitor suramin (100 µM) rather than the α-adrenergic inhibitor phentolamine (10 µM). Variable sensitivity to SNX-482 and suramin between animals closely correlated with Cav2.3 staining. We concluded that a majority of ATP and NE stores localize to separate vesicle pools that use different synaptotagmin isoforms and that localize near different Cav2 isoforms to mediate vesicle release. Cav2.3 appears to play a previously unrecognized role in mediating ATP release in the rat tail artery. NEW & NOTEWORTHY Immunofluorescence imaging of vesicular nucleotide translocase and vesicular monoamine transporter 2 in rat tail arteries revealed that ATP and norepinephrine, classical cotransmitters, localize to well-segregated vesicle pools. Furthermore, vesicular nucleotide translocase and vesicular monoamine transporter 2 exhibit preferential localization with specific Cav2 isoforms. These novel observations address long-standing debates regarding the mechanism(s) of sympathetic neurotransmitter corelease.


Sign in / Sign up

Export Citation Format

Share Document