t(2; 18) and t(18;22) Variant Chromosomal Translocations in B Cell Malignancies

1992 ◽  
Vol 8 (3) ◽  
pp. 197-200 ◽  
Author(s):  
Marie Francoise Bertheas ◽  
Monique Bachy ◽  
Jean-Pierre Magaud ◽  
Ruth Rimokh ◽  
Christian Vasselon ◽  
...  
Cell Reports ◽  
2021 ◽  
Vol 36 (2) ◽  
pp. 109387
Author(s):  
Di Liu ◽  
Yong-Hwee Eddie Loh ◽  
Chih-Lin Hsieh ◽  
Michael R. Lieber

2021 ◽  
pp. gr.276042.121
Author(s):  
Aneta Mikulasova ◽  
Daniel Kent ◽  
Marco Trevisan-Herraz ◽  
Nefeli Karataraki ◽  
Kent T.M Fung ◽  
...  

Chromosomal translocations are important drivers of hematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B cell (MAF, MYC and FGFR3/NSD2) and in T-cell malignancies (LMO2, TLX3 and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


2020 ◽  
Author(s):  
Aneta Mikulasova ◽  
Marco Trevisan-Herraz ◽  
Kent Fung ◽  
Cody Ashby ◽  
Nefeli Karataraki ◽  
...  

AbstractChromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called super-enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the enhancers of the immunoglobulin heavy chain locus (IGH) and proto-oncogene CCND1 that are common in B-cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B-cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of this locus. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B-cell (MAF, MYC and FGFR3) and in T-cell malignancies (LMO2, TLX3 and TAL1). Our analysis suggests that H3K4me3-BDs are created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs accompanies the translocation of super-enhancers.


Sign in / Sign up

Export Citation Format

Share Document