breakpoint detection
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
pp. gr.276042.121
Author(s):  
Aneta Mikulasova ◽  
Daniel Kent ◽  
Marco Trevisan-Herraz ◽  
Nefeli Karataraki ◽  
Kent T.M Fung ◽  
...  

Chromosomal translocations are important drivers of hematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B cell (MAF, MYC and FGFR3/NSD2) and in T-cell malignancies (LMO2, TLX3 and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042045
Author(s):  
Shichuang Zheng ◽  
Jiajun Li ◽  
Shuai Chen ◽  
Yujia Liang ◽  
Jiangtao Lin

Abstract Traditional detection method of data breakpoint in computer communication network has some disadvantages, such as time consuming, etc. Firstly, the data of computer transmission breakpoints are stored based on cloud framework, and the density distribution characteristics of the region are extracted according to the breakpoint data. Then the optimal data breakpoint detection path is selected. Finally, the similarity of each data breakpoint is detected by the computer, so that the detection of data breakpoints is realized by computer. After experiments, the data breakpoint detection is realized, the results show that the designed method can detect data breakpoints accurately, which is time-saving and has a certain significance of popularization.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0250915
Author(s):  
Zachary Stephens ◽  
Daniel O’Brien ◽  
Mrunal Dehankar ◽  
Lewis R. Roberts ◽  
Ravishankar K. Iyer ◽  
...  

The integration of viruses into the human genome is known to be associated with tumorigenesis in many cancers, but the accurate detection of integration breakpoints from short read sequencing data is made difficult by human-viral homologies, viral genome heterogeneity, coverage limitations, and other factors. To address this, we present Exogene, a sensitive and efficient workflow for detecting viral integrations from paired-end next generation sequencing data. Exogene’s read filtering and breakpoint detection strategies yield integration coordinates that are highly concordant with long read validation. We demonstrate this concordance across 6 TCGA Hepatocellular carcinoma (HCC) tumor samples, identifying integrations of hepatitis B virus that are also supported by long reads. Additionally, we applied Exogene to targeted capture data from 426 previously studied HCC samples, achieving 98.9% concordance with existing methods and identifying 238 high-confidence integrations that were not previously reported. Exogene is applicable to multiple types of paired-end sequence data, including genome, exome, RNA-Seq and targeted capture.


2021 ◽  
Author(s):  
Jean-Pierre Kocher ◽  
Zachary Stephens ◽  
Daniel O'Brien ◽  
Mrunal Dehankar ◽  
Lewis Roberts ◽  
...  

The integration of viruses into the human genome is known to be associated with tumorigenesis in many cancers, but the accurate detection of integration breakpoints from short read sequencing data is made difficult by human-viral homologies, viral genome heterogeneity, coverage limitations, and other factors. To address this, we present Exogene, a sensitive and efficient workflow for detecting viral integrations from paired-end next generation sequencing data. Exogene's read filtering and breakpoint detection strategies yield integration coordinates that are highly concordant with those found in long read validation sets. We demonstrate this concordance across 6 TCGA Hepatocellular carcinoma (HCC) tumor samples, identifying integrations of hepatitis B virus that are validated by long reads. Additionally, we applied Exogene to targeted capture data from 426 previously studied HCC samples, achieving 98.9% concordance with existing methods and identifying 238 high-confidence integrations that were not previously reported. Exogene is applicable to multiple types of paired-end sequence data, including genome, exome, RNA-Seq or targeted capture.


Author(s):  
Nikoletta Rozgonyi-Boissinot ◽  
Ildikó Buocz ◽  
István Gábor Hatvani ◽  
Ákos Török

AbstractThe evaluation of shear stress versus shear displacement curves is in the main focus of geotechnical engineering. Such curves, depending on the rock assessed, consist of a quasi-linear section, followed by a “kick” representing the peak shear strength, and a residual part, mostly parallel to the abscissa. The aim of the present study is to facilitate the future automatic detection of these crucial characteristics to take a step towards replacing their visual/analogue determination via modern statistical tools. Breakpoint detection methods (Cross-Entropy, Change Point Model) were applied to curves obtained from laboratory shear tests describing the shearing along discontinuities of nine Mont Terri Opalinus Claystone samples. Smooth and moderately rough claystone surfaces were studied. Results indicated that the end of the rising section and the kick observed on the shear strength curves was effectively approximated with the Change Point Model framework. An additional practical advantage of applying statistical tools such as breakpoint detection to shear strength determination is that it ensures the comparability of the obtained results.


2020 ◽  
Vol 590 ◽  
pp. 125458
Author(s):  
Niloofar Farsi ◽  
Najmeh Mahjouri ◽  
Hamid Ghasemi

2020 ◽  
Vol 6 (3) ◽  
pp. a005348
Author(s):  
Jeffrey Ng ◽  
Eleanor Sams ◽  
Dustin Baldridge ◽  
Milinn Kremitzki ◽  
Daniel J. Wegner ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Aneta Mikulasova ◽  
Marco Trevisan-Herraz ◽  
Kent Fung ◽  
Cody Ashby ◽  
Nefeli Karataraki ◽  
...  

AbstractChromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called super-enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the enhancers of the immunoglobulin heavy chain locus (IGH) and proto-oncogene CCND1 that are common in B-cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B-cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of this locus. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B-cell (MAF, MYC and FGFR3) and in T-cell malignancies (LMO2, TLX3 and TAL1). Our analysis suggests that H3K4me3-BDs are created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs accompanies the translocation of super-enhancers.


Sign in / Sign up

Export Citation Format

Share Document